您的浏览器版本太低,请使用IE9(或以上)、谷歌、火狐等现代浏览器。360、QQ、搜狗等浏览器请使用极速模式。
学院发表文章

A 10-m national-scale map of ground-mounted photovoltaic power stations in China of 2020

发布日期:2024-05-29浏览次数:信息来源:土地科学与技术学院

Quanlong Feng, Bowen Niu, Yan Ren, Shuai Su, Jiudong Wang, Hongda Shi, Jianyu Yang & Mengyao Han

Abstract

We provide a remote sensing derived dataset for large-scale ground-mounted photovoltaic (PV) power stations in China of 2020, which has high spatial resolution of 10 meters. The dataset is based on the Google Earth Engine (GEE) cloud computing platform via random forest classifier and active learning strategy. Specifically, ground samples are carefully collected across China via both field survey and visual interpretation. Afterwards, spectral and texture features are calculated from publicly available Sentinel-2 imagery. Meanwhile, topographic features consisting of slope and aspect that are sensitive to PV locations are also included, aiming to construct a multi-dimensional and discriminative feature space. Finally, the trained random forest model is adopted to predict PV power stations of China parallelly on GEE. Technical validation has been carefully performed across China which achieved a satisfactory accuracy over 89%. Above all, as the first publicly released 10-m national-scale distribution dataset of China’s ground-mounted PV power stations, it can provide data references for relevant researchers in fields such as energy, land, remote sensing and environmental sciences.


A 10-m national-scale map of ground-mounted photovoltaic power stations in China of 2020.pdf