Biochar altered native soil organic carbon by changing soil aggregate size distribution and native SOC in aggregates based on an 8-year field experiment

Zhencai Sun, Zhengcheng Zhang, Kun Zhu, Zhimin Wang, Xiaorong Zhao, Qimei Lin, Guitong Li

PII:	S0048-9697(19)34821-1
DOI:	https://doi.org/10.1016/j.scitotenv.2019.134829
Reference:	STOTEN 134829
To appear in:	Science of the Total Environment
Received Date:	18 July 2019
Revised Date:	21 September 2019
Accepted Date:	3 October 2019

Please cite this article as: Z. Sun, Z. Zhang, K. Zhu, Z. Wang, X. Zhao, Q. Lin, G. Li, Biochar altered native soil organic carbon by changing soil aggregate size distribution and native SOC in aggregates based on an 8-year field experiment, *Science of the Total Environment* (2019), doi: https://doi.org/10.1016/j.scitotenv.2019.134829

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Elsevier B.V. All rights reserved.

		D					Ω.
α irm	\mathbf{a} .	1211	e_1	111	ΩY		16
oun	uı			$\mathcal{O}^{\mathbf{I}}$	9	<u> </u>	11.0

1	Biochar	altered	native	soil	organic	carbon	by c	hanging	soil	

- 2 aggregate size distribution and native SOC in aggregates
- 3 based on an 8-year field experiment
- 4 Zhencai SUN^a, Zhengcheng ZHANG^{b*}, Kun ZHU^b, Zhimin WANG^a, Xiaorong ZHAO^b,
- 5 Qimei LIN^b, Guitong LI^{b†}
- 6 a College of Agronomy, China Agricultural University
- 7 b College of Resources and Environment, China Agricultural University
- 8 Address: No. 2. West Road of Yuan-Ming-Yuan, Haidian District, Beijing, China, 100193
- 9 *Contribution is the same as the first author
- 10 *†*Corresponding author: <u>lgtong@cau.edu.cn</u>
- 11
- 12 Biochar altered native soil organic carbon by changing soil
- 13 aggregate size distribution and native SOC in aggregates
- 14 based on an 8-year field experiment
- 15 Zhencai SUN^a, Zhengcheng ZHANG^{b*}, Kun ZHU^b, Zhimin WANG^a, Xiaorong ZHAO^b,
- 16 Qimei LIN^b, Guitong LI^{b†}
- 17 a College of Agronomy, China Agricultural University
- 18 b College of Resources and Environment, China Agricultural University
- 19 Address: No. 2. West Road of Yuan-Ming-Yuan, Haidian District, Beijing, China, 100193
- 20 *Contribution is the same as the first author

21 †Corresponding author: <u>lgtong@cau.edu.cn</u>

22 Abstract

23	Soil aggregates play an important function in soil carbon sequestration because larger
24	aggregates have higher soil organic carbon contents. A field experiment was set up in
25	2009 that included four treatments, i.e., B0, B30, B60, and B90 representing biochar
26	application rates of 0, 30, 60, and 90 t ha ⁻¹ , respectively. In 2017, we investigated the
27	soil aggregate distribution, biochar and n-SOC contents in soil and different aggregate
28	sizes using the ignition method, as well as the contribution of wheat and maize
29	residues to n-SOC content in each aggregate by isotopic analysis. The results showed
30	that, relative to B0, the n-SOC content presented an 14.0% decrease in B30, compared
31	with an 18.8% and 8.2% increase in B60 and B90 (p<0.05), respectively.
32	Furthermore, the decreased n-SOC content in B30 was due to the decreased
33	proportions of < 53 μm and 1000-250 μm aggregates. The increased n-SOC content in
34	B60 was due to the significantly enhanced proportion of 2000-1000 μm and 1000-250
35	μ m aggregates because the n-SOC contents of these two aggregates size classes were
36	not changed by biochar. However, in B90, the increased n-SOC content was ascribed
37	to the enhanced proportions of 2000-1000 μm and $< 53~\mu m$ aggregates, although the
38	n-SOC content in 2000-1000 μ m aggregate was significantly decreased by biochar.
39	Further analysis showed that the decreased n-SOC content in 2000-1000 μm
40	aggregates was associated with decreased wheat-derived n-SOC content. In synthesis,

41 our study showed a long-term effect of biochar on the n-SOC content by mainly 42 changing soil aggregation and native organic carbon derived from wheat residue, and 43 this effect was dependent on the applied amount. The biochar rate of 60 t ha⁻¹ is 44 recommended for carbon sequestration in terms of the more pronounced negative 45 priming of native SOC, while the feasible combination between other biochars and 46 soils needs further clarification.

47 Key words: long-term field experiment, biochar rates, aggregate distribution, native

48 SOC,

wheat-maize

cropping

system.

49 **1. Introduction**

Biochar is made by the pyrolysis of organic materials such as agricultural and forestry 50 residues under low oxygen or anaerobic conditions (Lehmann and Joseph, 2015). Due 51 to the richness of aromatic carbon, biochar is recalcitrant and therefore has 52 considerable potential for increasing soil carbon sequestration (Lehmann et al., 2006; 53 Smith, 2016). Studies have reported that biochar can significantly increase the total 54 55 soil organic carbon content (including biochar itself) after its application to soils in 56 several agroecosystems (Krull et al., 2006; Novak et al., 2009; Van Zwieten et al., 57 2010; Wang et al., 2018). In addition, biochar has been reported to alter soil 58 physico-chemical properties in terms of increased soil pH (Jeffery et al., 2011; Wang et al., 2018), enhanced soil moisture (Abel et al., 2013; Sun et al., 2013; Hardie et al., 59 60 2014; Sun et al., 2015), and the increased microbiological activities (Lehmann et al., 61 2011; Duan et al., 2017; Senbayram et al., 2019). However, more and more recent evidence has shown that biochar has a strong interaction with native soil organic 62 63 carbon (n-SOC) (Herath et al., 2014; Lu et al., 2014; Singh and Cowie, 2014; Tian et 64 al., 2016; Weng et al., 2017; Dong et al., 2018). For instance, it was found that 65 biochar suppressed the decomposition of n-SOC within 1 year (Lu et al., 2014; Herath et al., 2014) while other studies reported that biochar stimulated the decomposition of 66 67 n-SOC after 3.5-5 years application (Singh and Cowie, 2014; Dong et al., 2018). With 68 respect to potential mechanisms, Zimmerman et al. (2011) proposed that at the early 69 stage (first 90 d) of biochar application, the decomposition of labile-C in biochar was

70	stimulated due to cometabolism with soil organic carbon, whereas later, biochar
71	suppressed n-SOC mineralization due to n-SOC sorption to biochar based on a
72	one-year incubation trial. However, results from the incubation experiments may not
73	be representative of field condition in terms of the input of residues, variations in
74	moisture and temperature, and other management options that determine the soil
75	carbon turnover. For instance, there were stochastic variations in temperatures and
76	soil wetting-drying cycles in a field environment (Fierer and Schimel, 2002). In
77	addition, there are complex interactions among roots, semi-decomposed plant residues
78	and the applied fresh straw (Duong et al., 2009; Nguyen et al., 2016). A certain
79	amount of biochar may be lost due to run-off and leaching in the field (Koide et al.,
80	2011; Dong et al., 2018), which in turn may affect the total soil organic carbon by
81	potentially changing interactions with n-SOC. In addition, although the potential
82	impact of biochar on agricultural ecosystems has been thoroughly investigated for
83	many years (Lehmann et al., 2006), most of the current reported results on n-SOC are
84	still limited to a relatively short-term period, and, to date, there is limited evidence on
85	the effect of biochar on n-SOC content more than 5 years after its application. This, to
86	a certain extent, hinders the understanding of how biochar affects soil carbon
87	sequestration potential or soil fertility over the long term. Weng et al., (2017)
88	conducted a more than 9-year field study on a rhodic ferralsol of subtropical grass
89	land with 10 t ha ⁻¹ biochar and found that biochar decreased n-SOC degradation
90	through accelerating the formation of micro-aggregates having a protection effect on

91 n-SOC. However, the long-term effect of biochar on n-SOC content in other soil types 92 and in other regions remains unknown. In addition, the applied amounts of biochar 93 largely ranged from less than 10 t ha⁻¹ to more than 100 t ha⁻¹ (Chan et al., 2008; 94 Herath et al., 2014; Sun et al., 2015; Dong et al., 2018; Baiamonte et al., 2019), and it 95 is still unclear about the response of n-SOC content to the applied biochar amounts 96 over the long term.

97 Soil aggregates play a central role in soil carbon and nutrient turnover. The 98 formation and stability of soil aggregates are affected by many factors, such as plant 99 roots, microorganisms, and soil organic matter content, and their interactions (Six et 100 al. 2006). For instance, SOC is an important cementitious substance that enhances the 101 agglomeration of soil particles and promotes the formation of aggregate structures 102 (Six et al., 2006). Larger soil aggregates have higher soil organic carbon contents 103 (Gupta and Germida, 1988). Simultaneously, agglomeration can protect the internal 104 organic carbon from the decomposition of microorganisms and can increase the 105 stability of soil organic carbon. Therefore, there is a close relationship between soil 106 aggregates and organic carbon. Previous studies have shown the effect of biochar 107 application on the formation and stability of soil aggregates (Sun and Lu, 2014; 108 Blanco-Canqui et al., 2017; Weng et al., 2017; Zhang et al., 2017; Baiamonte et al., 109 2019). For instance, Sun and Lu (2014) found that 6% rice husk biochar application 110 not only significantly increased the proportion of macro-aggregates (2000-5000 µm 111 and 250-500 μ m) in a clavey soil, but also reduced the micro-aggregates proportion (<

112	250 μ m). A similar observation was reported for a Mollisol in Northeast China
113	(Zhang et al., 2019). Zhang et al. (2017) reported that biochar application at a rate of
114	16 t ha ⁻¹ increased the proportion of soil macro-aggregates (> 2000 μ m) on the Loess
115	Plateau of China, while no biochar application effect was observed at a rate of 8 t ha ⁻¹ ,
116	indicating dependence on the amount of biochar applied. In addition, it has been
117	indicated that biochar can increase wet aggregate stability more in sandy than in silty
118	clay and clayey soils (Ouyang et al., 2013; Burrell et al., 2016). A long-term field trial
119	showed biochar aging due to physical, chemical, and biological effects on biochar,
120	which may in turn influence the effects of biochar on soil quality, such as carbon
121	sequestration (Blanco-Canqui, 2017). In addition, the considerable loss of biochar in a
122	field trial of North China Plain (Dong et al., 2016) highlights the need for assessing
123	the long-term biochar effects on soil aggregation and soil carbon sequestration, as
124	well as the underlying mechanisms in terms of the contributors to n-SOC in each
125	aggregate size. The long-term biochar as well as the biochar amount effect on soil
126	aggregation and n-SOC content in different aggregate size classes is still unknown
127	and needs clarification, this would facilitate the understanding on how the use of
128	biochar influence n-SOC at a scale of aggregates.

Based on a field experiment established on the North China Plain in 2009, we assessed the interaction between biochar and n-SOC in different aggregate size classes at various biochar rates (0, 30, 60, and 90 t ha⁻¹) 8 years after application. The

132	aim of this study was to investigate: under field conditions, (1) the total n-SOC
133	content change 8 years after application of different rates of biochar, (2) change in
134	soil aggregates size distribution and n-SOC content of each aggregates at different
135	rates of biochar, and their contribution to total n-SOC content, and (3) the difference
136	between contributions of wheat residue and maize residue to n-SOC content of each
137	aggregate at different rates of biochar, and the association with changed n-SOC
138	content. We hypothesized that biochar may change both soil aggregates size
139	distribution and n-SOC content of aggregates with certain size class, and this scenario
140	should depend on the applied biochar rates.

142 **2.** Materials and methods

143 2.1. Experimental site conditions and design

144 This experimental field was located at the Shangzhuang Experimental Station of 145 China Agricultural University, Beijing, China (40°08'21"N, 116°10'52"E) (Liang et 146 al., 2014). The field site has a typical continental monsoon climate, with an average annual air temperature of 11.6°C and an average annual precipitation of 400 mm. The 147 148 highest and lowest air temperatures occur in July and January, respectively. Annual 149 rainfall mainly occurs from July to August. The soil at the experimental field site is 150 classified as a Fluvisol according to the FAO system. The soil particle distribution was measured following the method of Stemmer et al. (1998). Total organic carbon 151 152 (TOC) and total nitrogen (TN) were analyzed using an elemental analyzer (vario EL 153 III, CHNOS Elemental Analyzer, Elementar, Germany). Prior to the TOC and TN measurement, carbonates of all aggregates and biochar were removed by 154 potentiometric titration (Loeppert and Suarez, 1996). In the soil-biochar mixtures, 155 TOC represents n-SOC content plus the biochar C content. Soil pH was determined 156 157 based on a soil-to-water ratio of 1:5 (w/v); the same ratio was used for electrical 158 conductivity (EC) measurement (Fang et al., 2014). Cation exchange capacity (CEC) 159 was measured by flame photometry (Rhoades, 1986). The soil bulk density was 160 measured using a core (5 cm diameter \times 5 cm length). The soil had SOC of 4.32 g 161 kg⁻¹, TN of 0.62 g kg⁻¹, pH of 8.02, EC of 0.19 mS cm⁻¹, and CEC of 10.00 cmol(+)

162 kg⁻¹.

163	The field experiment was established in June 2009. Four treatments with three
164	replicate plots for each treatment were set up following a completely random design.
165	Each plot measured 11 m \times 10 m (110 m ²). The four treatments consisted of biochar
166	application rates of 0, 30, 60, and 90 t ha ⁻¹ , abbreviated as B0, B30, B60, and B90,
167	respectively. The applied biochar rates refer to the results of our previous incubation
168	up to 60 t ha ⁻¹ and the study of Chan et al., (2008). The biochar used was from a
169	mixture of rice husks (70%) and cotton seed hulls (30%) used for mushroom
170	production via a slow pyrolysis of 400°C for 4 h in a sealed oven. The conversion
171	efficiency of the pyrolysis was approximately 35%. As a commercial
172	biochar-producing system, the pyrolysis conditions between each oven were almost
173	the same. The analytical procedures for most biochar properties, i.e., organic C, TN,
174	pH, EC, and CEC, were the same as those used for the soil properties. The biochar
175	surface area was analyzed following the Brunauer-Emmett-Teller (BET) method
176	(Dai et al., 2013). The ash content was measured by heating biochar at 550°C in a
177	muffle furnace for 4 h. More than 90% of the biochar particles were within the 0.5-5.0
178	mm range. In addition, the biochar had an SOC of 491.30 g kg ⁻¹ , TN of 12.20 g kg ⁻¹ ,
179	pH of 10.64, EC of 1.02 mS cm ⁻¹ , CEC of 12.51 cmol(+) kg ⁻¹ , and surface area of
180	$15.68 \text{ m}^2 \text{ g}^{-1}$.

181 At the experimental field site, all the treatments followed the traditional
182 cultivation mode of winter wheat-summer maize rotation in the North China Plain, in
10

183	which the winter wheat was planted in October and harvested in June, and the
184	summer maize was planted in June and harvested in October. Prior to the experiment,
185	the wheat and maize straw residues were removed from the field after harvest. The
186	field management during the experiment was identical for all the treatments. Briefly,
187	winter wheat was flood-irrigated annually in early December and in the middle of the
188	following May at a rate of 900 m ³ ha ⁻¹ each time, and summer maize did not receive
189	irrigation during the growing season. The different amount of biochar was applied
190	once to the field at the beginning of the experiment. Briefly, the biochar was evenly
191	spread by hand on the surface of the plots and then mixed well with the 0-20 cm soil
192	layer using a rotary cultivator. The 0-20 cm soil layer was tilled after harvesting
193	summer maize in early October. Both maize and wheat were fertilized once at sowing,
194	i.e., 112.5 kg N ha ⁻¹ , 112.5 kg P_2O_5 ha ⁻¹ , and 112.5 kg K_2O ha ⁻¹ . The fertilizer was a
195	compound fertilizer that included 15% N, P_2O_5 , and K_2O . The crop residue was
196	mechanically chopped after harvest and then returned to the field site. The chopped
197	wheat straw was 2-3 cm in length and was mulched on the soil surface from June to
198	October, and the chopped maize straw was 1-2 cm in length, and was plowed into the
199	0-20 cm soil layer.

The soil sampling was conducted before the wheat harvest in June 2017. Soil was collected from all three plots of each treatment by randomly selecting 5 sites, the 0-20 cm soil layer in each plot was sampled and the soil samples were pooled together, resulting in approximately 2 kg for each plot. After 2 weeks of air-drying, visible

204	stones, plant roots, and soil fauna were manually removed, and all the samples were
205	sieved through a 2 mm mesh for the various measurements mentioned below.
206	2.2 Soil water-stable aggregates, contents of biochar carbon and n-SOC in
207	aggregates
208	The wet-sieving procedure proposed by Elliott (1986) was followed to separate soil
209	water-stable aggregates. The sample in each plot of one treatment was used to
210	separate the aggregates into four size classes, i.e., 2000-1000 $\mu m,$ 1000-250 $\mu m,$
211	250-53 μm, and < 53 μm.
212	To measure the organic carbon content of pure biochar, the pure biochar (> 0.5
213	mm) from the B30, B60, and B90 treatments was picked out by hand until no visible
214	biochar particles in the soil samples (Koide et al., 2011). Then, biochar particles were
215	suspended in distilled water at a ratio of $1:10 (w/v)$, shaken vigorously to dislodge the
216	soil particles, and dried at 60°C after rinsing the biochar four times with distilled
217	water (Koide et al., 2011). The biochar C and n-SOC contents in aggregates of
218	different sizes were measured following the ignition method of Koide et al. (2011).
219	Briefly, 3.0 g subsamples of soil or each aggregate without biochar (B0) and with
220	biochar (B30, B60 and B90) as well the above-mentioned picked pure biochar were
221	weighed and placed into a 550°C muffle furnace for 4 h and were then weighed again

 $(L_{mixture})$. The amounts of biochar and biochar C in aggregates were calculated as 224 follows:

to calculate the loss rate of the soil (L_{soil}) , biochar $(L_{biochar})$ and soil-biochar mixture

225 Biochar amount (g biochar kg⁻¹ soil sample) =
$$\frac{L_{mixture} - L_{soil}}{L_{soil} - L_{biochar}} \times 1000$$
 (Eq. 1)

where $L_{biochar} = 64.20\% \pm 0.08\%$. L_{soil} indicates the aggregates of different sizes or the whole soil sample.

Biochar C amount (g C kg⁻¹ soil sample) = Biochar amount
$$\times$$
 TOC_{biochar} (Eq. 2)

- where *TOC*_{biochar} is the total organic C content of biochar.
- 230 The n-SOC content was calculated by subtracting the biochar C amount from the
- 231 TOC content in the soil-biochar mixture.

232
$$n$$
-SOC $(g C kg^{-1} soil) = \frac{TOC - biochar C amount}{1000 - biochar amount} \times 1000$ (Eq. 3)

233 2.3 $\delta^{13}C$ of n-SOC and the contribution from wheat and maize

The δ^{13} C values of the soil or soil-biochar mixture, straw residues, and pure biochar 234 235 were measured using an isotope ratio mass spectrometer (IsoPrime IRMS, GV 236 Instruments, Manchester, UK). The δ^{13} C values of wheat straw (collected in 2016 and 237 2017) and maize straw (collected in 2016 and 2017) were $-27.47 \pm 0.54\%$ and -13.58238 \pm 0.45‰ (n=3), respectively. The value for biochar collected in 2017 was -26.50‰ \pm 0.38‰ (n=3). The contents (g C kg⁻¹ soil) of TOC, native SOC and biochar C, and 239 the $\delta^{13}C$ values of TOC ($\delta^{13}C_{TOC}$) and biochar ($\delta^{13}C_{biochar}$) in the soil or each 240 aggregate were used to calculate the $\delta^{13}C$ value of n-SOC ($\delta^{13}C_{soc}$) using the 241 following equation: 242

243
$$\delta^{13}C_{SOC} = \frac{\delta^{13}C_{TOC} \times TOC - \delta^{13}C_{biochar} \times biocharC}{\text{native SOC}}$$
(Eq. 4)

244	The contribution	proportion	of	wheat	straw	and	maize	straw	to	native	SOC	was
245	calculated by the	following ed	quat	tions:								

246
$$-27.47\% \times f1 + -13.58\% \times f2 = \delta^{13}C_{SOC}$$
 (Eq. 5)

247
$$f1 + f2 = 1$$
 (Eq. 6)

- where $\delta^{I3}C_{soc}$ is the $\delta^{I3}C$ value of native SOC, and f1 and f2 are the respective contribution proportions of wheat straw and maize straw to the native SOC in each aggregate.
- 251 *2.4 Statistical analysis*

252 Significant differences in TOC, n-SOC contents of total soil and aggregates of 253 different sizes, the biochar and biochar-C amounts of aggregates of different sizes, 254 and the contribution of wheat or maize straw to n-SOC of aggregates of different sizes 255 among the treatments B0, B30, B60, B90 were assessed. First, the parameters were 256 checked to determine whether they followed a normal distribution and homogeneity 257 of variance, if so, two-way analysis of variance with Tukey's test was used to conduct 258 the comparison. For data that did not follow a normal distribution, a non-parametric 259 test (Kruskal-Wallis test) was conducted to compare the treatment differences. The 260 statistical analysis was carried out using SPSS 22.0 version (IBM Inc., Chicago, IL, 261 USA).

262 3 Results

263 *3.1 Effect of biochar on soil aggregation*

264	Among the treatments, the proportion of different aggregate sizes followed the order
265	of < 53 μm > 250-53 μm > 1000-250 μm > 2000-1000 $\mu m,$ except for the B30
266	treatment (Table 1). The B0 and B60 treatments had similar proportions of 250-53 μ m
267	and $<53\ \mu m$ aggregates based on the statistical analysis (result not shown here). In
268	contrast, the B30 treatment had a significantly higher proportion of 250-53 μm than
269	that of $< 53\ \mu\text{m}$ aggregates, while the opposite occurred in the B90 treatment. In the
270	presence of biochar, the proportion of 2000-1000 μ m aggregates was significantly
271	higher relative to the treatment without biochar (p<0.05), i.e., the B30, B60, and B90
272	treatment values were 1.81, 2.70, 2.96 times that of the B0 treatment, respectively.
273	Furthermore, the difference between each of two biochar treatments reached
274	significant level of p<0.05. The proportion of 1000-250 μ m aggregates in the B60
275	treatment was significantly higher than that in the B0, B30, and B90 treatments
276	(p< 0.05), but there was no difference between the later three treatments. The
277	proportion of 250-53 μ m aggregates was significantly higher in the B30 treatment
278	than in the other three treatments ($p<0.05$) and that in the B60 and B90 treatments
279	was significantly lower than that in the B0 treatment (p<0.05). The proportion of the
280	$< 53 \ \mu m$ aggregates in the B60 and B90 treatments was not significantly different

- from that in the B0 treatment. The B30 treatment had a significantly lower proportion
- of $< 53 \mu m$ aggregates compared with the B0, B60, and B90 treatments (p<0.05).
- 283 *3.2 Biochar content in aggregates of different sizes*

The result from the ignition method showed that the content of biochar and biochar C 284 were higher in aggregates with a large size relative to smaller aggregates. In each 285 aggregate, the biochar content consistently increased following an increased biochar 286 rate. For instance, in aggregates of 2000-1000 µm, the biochar content in the B90 287 treatment was 4.30 times and 3.21 times that of the B60 and B30 treatments, 288 respectively (p<0.05) (Table 1). Similarly, the biochar content in the 1000-250 µm 289 aggregates of the B90 treatment was 5.41 times and 3.04 times that of the B60 and 290 291 B30 treatments, respectively (p<0.05) (Table 1). In aggregates of 250-53 μ m, the 292 biochar content presented an increasing trend following an increasing biochar rate, 293 while there was no significant difference between each of the two biochar rates. There was no biochar in aggregates of $< 53 \mu m$. 294

295 3.3 TOC and n-SOC contents of total soil and aggregates of different sizes

TOC content had an increasing trend following increased biochar application rate, and was significantly higher at high biochar rates than at lower biochar rates (p<0.05) (Fig. 1). In contrast, the n-SOC content in the treatments followed the order: B60 > B90 >B0 > B30. The n-SOC content in the B60 treatment was 18.8%, 38.2%, and 9.8% higher than that in the B0, B30, and B90 treatments (p<0.05), respectively (Fig. 1). The n-SOC content was significantly higher in the B90 treatment than in the B0 16 treatment, but was significantly lower in the B30 treatment than in the B0 treatment (p<0.05).

The TOC content consistently decreased following a decrease in the aggregate 304 size from 2000-1000 μ m to < 53 μ m (Fig. 2). In each aggregate size class, the TOC 305 content increased following an increase in the biochar application rate except for the < 306 53 µm aggregates (Fig. 2). The TOC content in 2000-1000 µm, 1000-250 µm, and 307 250-53 µm aggregates were 29.2, 21.9, and 4.16 g kg⁻¹, respectively, in the B0 308 treatment, compared with increase of 9.24% (11.2%), 10.6% (6.49%), and 5.29% 309 (35.3%) in the B30 (B60) treatment and of 25.7%, 35.8%, and 80.3% in the B90 310 treatment. However, only the TOC content of the B90 treatment was significantly 311 higher than that in the other treatments (p < 0.05). 312

313 In contrast to the increased TOC content following the increase in the biochar 314 application rate, the applied biochar had contrasting effects on the n-SOC content in aggregates of different sizes, e.g., biochar decreased the content of n-SOC in 315 macro-aggregates (> 250 µm) but increased the n-SOC content of 250-53 µm 316 micro-aggregates. Briefly, in the 2000-1000 µm aggregates, the n-SOC content was 317 28.61, 27.89, and 22.38 g kg⁻¹ in the B30, B60, and B90 treatments, respectively; 318 these values were 2.03%, 4.49%, and 23.4% lower than the value (29.20 g kg⁻¹) 319 measured in the B0 treatment (Fig. 2). There was a significant difference between the 320 B90 treatment and the B0 treatment (p<0.05). Similarly, with respect to the 321 1000-250 µm aggregates, the B30, B60, and B90 treatments decreased the n-SOC 322 17

323	content by 0.06%, 3.73% and 9.97%, respectively, compared with the B0 treatment.
324	The B90 treatment had a significantly lower n-SOC content than the B0 and B30
325	treatments (p<0.05). Conversely, with respect to the 250-53 μm aggregates, the
326	presence of biochar increased the n-SOC content by 5.83% (B30), 32.6% (B60) and
327	43.3% (B90) compared with the B0 treatment. The B60 and B90 treatments had
328	significantly higher n-SOC contents compared with the B30 and B0 treatments
329	(p<0.05). Across the treatments, the TOC and n-SOC contents in < 53 μ m aggregates
330	were not significantly different.
331	3.4 Contribution of wheat and maize straw residues to n-SOC in aggregates
332	The contribution of wheat and maize straw to the n-SOC in each aggregate size class
333	is presented in Fig. 3. The wheat residue-derived C contributed 71.0% of the n-SOC
334	in the 2000-1000 μm aggregates in the B0 treatment (Fig. 3), which decreased to
335	68.5%, 65.3%, and 60.9%, respectively, in the B30, B60, and B90 treatments.
336	Regarding the contribution, in contrast to the B0 treatment, the B30, B60, and B90
337	treatments decreased the contribution of wheat residue-C by 5.5%, 8.6%, and 34.3%,
338	respectively. The difference between each of the two treatments was significant
339	(p<0.05). The same trend was observed in the 1000-250 μm aggregates, and the
340	n-SOC content of the 1000-250 μ m aggregates derived from wheat residue decreased
341	by 4.9% (B30), 12.3% (B60) and 22.7% (B90) compared with the B0 treatment. The
342	contribution of wheat residue to n-SOC was significantly lower in the B60 and B90
343	treatments than in the B0 treatment (p< 0.05). Furthermore, the contribution of wheat 18

344	residue to n-SOC between the B60 and B90 treatments was also significantly different
345	(p<0.05). However, for the 250-53 μm aggregates, the n-SOC content derived from
346	wheat residue in the B30, B60, and B90 treatments increased by 12.4%, 47.9% and
347	70.7%, respectively, compared with the B0 treatment. The contribution amounts of
348	wheat residue to n-SOC in the B60 and B90 treatments were significantly higher than
349	those in the B0 and B30 treatments (p<0.05). Based on the correlation analysis,
350	following the increase in the biochar application rate, the content of n-SOC was
351	significantly and negatively correlated with the contribution of wheat C to n-SOC in
352	the macro-aggregates (2000-1000 μm and 1000-250 μm) (p<0.01) (Fig. 3) but was
353	positively correlated with the contribution of wheat C to n-SOC in the
354	micro-aggregates (250-53 μ m) (p<0.01) (Fig. 3). In addition, the n-SOC content of all
355	sizes of aggregate derived from maize residue had an increasing trend following the
356	increase in the biochar application rate, but no significant difference was observed
357	among the treatments.

358 4 Discussion

359 *4.1 Effect of straw return and biochar on native SOC*

Prior to the experiment, the wheat and maize residuals were removed after harvesting. 360 Following 8-year crop residue return, the native SOC content increased from 4.32 g 361 kg⁻¹ to 7.87 g kg⁻¹, illustrating the promising potential of crop residue for soil carbon 362 sequestration. This scenario is in agreement with other findings (Lu et al., 2009; 363 Wang et al., 2015). Following biochar addition, it is difficult to clarify the biochar 364 effect on native SOC under field conditions; ¹⁴C can be used under laboratory control 365 but is rarely recommended for application at a field site due to its radioactive nature. 366 Furthermore, controlled laboratory conditions may create bias in the results compared 367 368 with more complicated field conditions. One of the differences is the physical loss of biochar in the field due to run off or leaching, which has been shown to be significant 369 (Dong et al., 2017). In this study, based on the ignition method (Koide et al., 2011), 370 n-SOC content was significantly affected by the presence of biochar 8 years after 371 application. We found that there was a notable effect of the amount of biochar on 372 n-SOC content, e.g., a rate of 30 t ha⁻¹ decreased n-SOC content while higher rates of 373 60 t ha⁻¹ and 90 t ha⁻¹ increased n-SOC content. Previous studies on the biochar effect 374 on n-SOC were generally conducted over short-term periods or under laboratory 375 control, ranging from less than 1 year to 2 years (Smith et al., 2010; Zimmerman et al., 376 2011; Rittl et al., 2015; Plaza et al., 2016; Zheng et al., 2018). For instance, Smith et 377 al. (2010), using ¹³C natural abundance, confirmed that biochar, but not soil organic 378 20

carbon, was mineralized 6 days after its application, which was more related to the 379 labile carbon in biochar promoting the microbial activity. Singh and Cowie (2014) 380 conducted an incubation experiment and reported that the applied biochar caused an 381 initial positive priming effect of n-SOC, and this effect diminished after a 5-year 382 experiment due to the depletion of labile SOC or stabilization of SOC caused by 383 biochar-induced organo-mineral interactions. In this field study with 8-year duration, 384 the results provided evidence of the long-term effect of biochar on n-SOC, and this 385 effect was dependent on the amount applied. Wardle et al. (2008) reported that 386 fire-derived charcoal promoted the decomposition of organic carbon in forest soils 10 387 years after occurring since the enhancement of soil microbial activity. However, the 388 amount of charcoal in the soil was not quantified. In this study, the variation in n-SOC 389 content following the different biochar application rates indicated the changes in 390 related processes. 391

392 4.2 Effect of biochar on soil aggregation and SOC content of each aggregate size393 class

Soil aggregate size distribution plays an important role in turnover of soil organic carbon content (Tisdall and Oades, 1982). Larger soil aggregates have higher soil organic carbon contents (Gupta and Germida, 1988). Following long-term biochar application, it is still unclear how biochar affects the soil aggregate distribution and n-SOC content in aggregates of different size classes, as well as the potential interaction between biochar and n-SOC. In this study, the results showed that the

400	proportion of 2000-1000 μm aggregates was enhanced in the presence of biochar, and
401	this enhancement was positively correlated with the biochar application rate. This
402	finding is in accordance with a previous study conducted by Dong et al. (2016), who
403	reported a similar phenomenon 5 years after biochar application. The highest biochar
404	content was measured in the macro-aggregates (2000-1000 μm). Previous studies
405	reported that biochar can form agglomerates with soil particles and organic-inorganic
406	complexes (Brodowski, 2006; Zheng et al., 2018). Following biochar application,
407	however, the enhanced 2000-1000 μm aggregate was not due to the direct effect of
408	the applied biochar because internal biochar was less than 3.0% (Table 1), which
409	cannot explain the 80.7%-196.4% increase in 2000-1000 μ m soil aggregates relative
410	to the treatment without biochar. The results therefore indicated an indirect effect of
411	biochar on increased macro-aggregates. Ouyang et al., (2013) addressed that biochar
412	can enhance the formation of macro-aggregates of sandy loam, similar soil texture to
413	that in our study; the underlying mechanism could be ascribed to the intimate
414	physic-chemical interaction between soil minerals and biochar particles by the recent
415	study of Zheng et al. (2018) on aggregates of 2000-53 μ m in a coastal soil. In addition,
416	Zheng et al. (2018) reported that biochar induced obvious shift of the bacteria taxa
417	responsible for stabilizing soil aggregates. A widely accepted theory of soil
418	aggregation formation is the phase theory proposed by Tisdall and Oades (1982),
419	which stated that soil micro-aggregates are generated from soil mineral particles
420	through binding of multivalent ions and soil organic matter, and then the soil 22

421	micro-aggregates are held together by plant roots and fungal hyphae to gradually form
422	larger aggregates. Fungi, through the spread of hyphae between aggregates and into
423	pores, may increase fungal binding to enmesh fine particles into macro-aggregates
424	(Tisdall et al., 1997). It has been shown that the interaction between the oxidized
425	carboxylic acid groups of biochar and minerals (Glaser et al., 2002; Zheng et al., 2018)
426	or sorption of soil organic matter on biochar can bind soil particles (Brodowski et al.,
427	2006; Joseph et al., 2010) to improve soil aggregation. Nevertheless, studies reported
428	that the high C/N of biochar is favorable for the growth of fungi (Ouyang et al., 2013;
429	Zheng et al., 2018), playing an important role in aggregate formation (De Gryze et al.,
430	2006; Zheng et al., 2018). In addition, as proposed by Six et al. (2000), soil aggregate
431	turnover may occur due to the breakage of macro-aggregates, which are scattered by
432	tillage mechanical forces to form micro-aggregates, or particulate organic matter in
433	macro-aggregates are degraded by microorganisms to form new micro-aggregates,
434	producing free micro-aggregates from the originally bounded micro-aggregates, or the
435	above-mentioned micro-aggregates are transformed back into macro-aggregates
436	following the addition of organic residues. Thus, following biochar application, the
437	enhancement in the proportion of 2000-1000 μm aggregates may also be derived from
438	aggregates breakdown or reorganization. The proportion of micro-aggregates (< 250
439	$\mu m)$ were not changed following biochar application at rates of 30 and 90 t ha^-1,
440	which is in accordance with Herath et al. (2014), who used a similar size biochar (>
441	500 $\mu m)$ as in our study and found that soil micro-aggregates (< 250 $\mu m)$ were not 23

442	changed after 295-day biochar application at rates of ranging from 10.0 to 17.3 t ha ⁻¹ .
443	However, when dividing micro-aggregates into 250-53 μm and <53 μm size classes,
444	the results showed that 30 t ha-1 biochar significantly enhanced the proportion of
445	250-53 μm aggregates and decreased the proportion of $<$ 53 μm aggregates, while the
446	trend was opposite for biochar with 90 t ha-1 biochar. This finding indicated that
447	biochar application has already interacted with soil aggregate sizes smaller than 250
448	μ m. Dong et al., (2016) inferred that small amounts of biochar particle (e.g., 30 t ha ⁻¹)
449	could cause contact with < 53 μm particles cemented into 250-53 μm and then lead a
450	decrease of < 53 μ m; while a large amount of biochar (90 t ha ⁻¹) would interact with
451	all aggregates which can reorganize the aggregates distribution related to the reported
452	aggregate turnover theories as mentioned before (Tisdall and Oades, 1982; Tisdall et
453	al., 1997; Six et al., 2000). In addition, 60 t ha ⁻¹ biochar decreased the proportions of
454	both 250-53 μm and $<$ 53 μm aggregates, which is similar to the findings of Dong et
455	al. (2016) based on a 5-year experiment which illustrated that the medium amount of
456	biochar (e.g., 60 t ha ⁻¹) could interact with both 250-53 μ m and < 53 μ m to form larger
457	aggregates. Overall, these results indicated that the amount of biochar applied
458	dramatically affected the soil aggregation, which may in turn have influenced the
459	associated functions in terms of carbon cycling in each aggregate.

Although the variation in different soil aggregate proportions was not correlated
 with the amount of biochar applied, the n-SOC content in each aggregate size class
 was linearly correlated with the biochar application amount. Interestingly, the n-SOC 24

463 content in aggregates greater than 250 μ m was significantly and negatively correlated
with the amount of biochar applied (p<0.01), while that in 250-53 μ m aggregates was
significantly and positively correlated with the applied biochar amount ($p<0.01$). To
our knowledge, this is first reported information on the quantified n-SOC content of
different aggregates size classes following biochar application. For the underlying
468 mechanisms, the reorganization of aggregates followed biochar application could
cause the change in the n-SOC of reorganized aggregates size classes since the n-SOC
470 is high in macro-aggregate than smaller size classes (Gupta and Germida, 1988). For
instance, the increased macro-aggregates (2000-1000 μ m) part could from binding of
smaller aggregates, this would directly decrease n-SOC content because of the low
n-SOC content in smaller aggregates. This assumption needs further clarification by
474 putting emphasis on how the aggregates are reorganized. In addition, Gupta and
Germida (1988) proposed the microbial biomass plays an important role in the
formation of macro-aggregates and is the primary resource of labile organic carbon
and nutrients. Relative to the macro-aggregates (> 250 μ m), the micro-aggregates (<
478 250 μm) contained lower organic carbon, microbial biomass, fungal biomass, and
respiratory activity, with a slow turnover rate of organic carbon (Gupta and Germida,
480 1988). Following biochar application, previous studies with a relatively short time
scale from 4 months (Steinbeiss et al., 2009) to 140 days (Ye et al., 2017) reported
that high application rates of biochar (\geq 5%) significantly increased the soil
483 fungi/bacterial ratio with preferential stimulation of soil fungi. Soil hyphae also 25

484	increased following biochar application (Lehmann et al., 2011). Additionally, Duan et
485	al., (2017) found that biochar aged for 5 years after application stimulated the
486	fungal- <i>nirK</i> gene abundance relative to fresh biochar. Mueller et al. (2014) reported a
487	pronounced increase in bioavailability of SOC after aggregates disruption. The recent
488	study of Zheng et al. (2018) on coastal soil found that biochar significantly increased
489	microbial biomass C of two aggregates size classes (2000-53 μm and < 53 μm), and
490	also changed the bacterial community. The presence of biochar may change the
491	microbial biomass or diversity of soil in this study, which in turn changes the n-SOC
492	turnover. Therefore, following biochar application, the reorganization of different
493	aggregates size classes as well as the potential change in microbial activity in
494	different aggregates size classes could all contribute to the n-SOC contents of
495	different aggregates size classes, while these two potential mechanisms need further
496	clarification.

497 4.3 The variation of contribution origins to SOC in different aggregate size classes

The presence of biochar has altered the proportions of n-SOC origins. For instance, in micro-aggregates, the wheat residue contribution to n-SOC in 250-53 µm aggregates, increased from 2.33 g kg⁻¹ in the treatment without biochar to 3.97 g kg⁻¹ in the B90 treatment. In this study, maize straw was incorporated into the soil immediately after harvest, while wheat straw is mulched until the next maize harvest. Based on the isotopic analysis, we found that the contribution of wheat residue to n-SOC in aggregates with different sizes was significantly changed by the applied biochar and 26

was correlated with the change in the n-SOC of soil aggregates (Fig. 3). It has been 505 reported that wheat residue contributions to n-SOC was higher than those of maize 506 residue (Buyanovsky and Wagner, 1996; Wynn and Bird, 2007) because maize 507 residue have lower lignin contents and C:N ratios but higher decomposition rates 508 relative to wheat residue (Zhang et al., 2008; Talbot and Treseder, 2012). Recent 509 studies have reported that wheat residue with more effective at promoting the 510 accumulation of native SOC than maize residue is due to their different 511 decomposition dynamics (Wang et al., 2015). Other studies reported that the labile 512 fraction of wheat-derived SOC were be higher and therefore more responsive to 513 changed management practices than maize-derived SOC (Neff et al., 2002; 514 Bhattacharyya et al., 2011). The result of the B0 treatment showed that the 515 contribution of wheat to n-SOC notably decreased from aggregates of $> 250 \mu m$ to 516 aggregates of $< 250 \mu m$, and this illustrates different aggregates size classes have 517 different contributions of wheat or maize to n-SOC. In this study, the input of biomass 518 from wheat or maize was not different among the treatments (data not shown here), 519 illustrating that the carbon input into soil was not different. Following biochar 520 application, the varied wheat-C contribution to n-SOC may be due to the 521 reorganization of different aggregates because smaller aggregates (< 250 µm) owning 522 low wheat-C contribution (Fig. 3). For instance, the decreased wheat-C contribution 523 to n-SOC of macro-aggregates (2000-1000 µm) may be related to the increased 524 macro-aggregates from binding of smaller aggregates. Considering a potential 525 27

526	fractionation effect of n-SOC, advanced model is needed such as on the basis of
527	two-end-member mixing model proposed by Balesdent et al. (1987). On the other
528	hand, following increasing biochar rates, the N content (excluding biochar-N) in
529	aggregates of above 250 μ m showed an inverse relationship to the contents of n-SOC
530	and wheat-derived n-SOC (Table A1, Fig. 3). This may be related to the enhanced
531	wheat-derived SOC mineralization following increasing biochar rates causing more C
532	loss and N left from wheat residue in these aggregates size classes. The aggregate size
533	determines the microbial composition with micro-aggregates having higher bacterial
534	biomass and lower fungal biomass and hyphal length relative to the macro-aggregates
535	(Gupta and Germida, 1988). A study has found that biochar can provide labile
536	substrates through the biochar itself or through the sorption of soil labile substrates to
537	support the growth of both bacterial and fungal biomass, with a shift to the dominance
538	of fungal biomass in an aged biochar soil system (Gul et al., 2015). Other studies also
539	reported the changed microbial communities and activity following biochar
540	application (Lehmann et al., 2011; Zhou et al., 2017; Chen et al., 2019; Senbayram et
541	al., 2019). However, up to date, whether and how the use of biochar can trigger the
542	change of the microbe biomass and composition in different aggregates is rarely
543	known. In addition, based on a 5-year biochar application, Dong et al. (2017) found
544	that the biochar had significantly aged, with a higher specific surface area and more
545	formed small pores compared with the treatment without biochar. Nevertheless,
546	whether the biochar in different aggregate sizes varies due to the known different

547 physico-chemical and biological micro-conditions remains as an open question for the548 further investigation.

In synthesis, following the biochar application, the change in the total n-SOC 549 content was due to the changed soil aggregate proportion and the varied n-SOC 550 content in different aggregates size classes (Fig. 1; Fig. 4). Relative to the BO 551 treatment, n-SOC content in the B30 treatment was decreased, indicating a positive 552 priming effect, and this scenario was also reported by Singh and Cowie (2014), who 553 found a positive priming effect of biochar at a low rate of 8.17 g kg⁻¹ (oven-dry basis) 554 on a clavey soil based on a 5-year monitoring period. Here, the positive priming effect 555 was due to the decreased n-SOC content in 1000-250 μ m and < 53 μ m aggregates, 556 mainly due to the latter being significantly decreased and these aggregates being the 557 predominant component of the investigated soil. Although the same increasing trend 558 was observed in n-SOC content in the 60 and 90 t ha-1 treatments relative to the B0 559 treatment, the reasons were contrasted, the B60 treatment increased total n-SOC 560 content due to the increased n-SOC contents in 2000-1000 µm and 1000-250 µm 561 aggregates, while the B90 treatment increased the n-SOC content due to the increased 562 n-SOC contents in 2000-1000 µm and <250 µm aggregates (Fig.4). 563

565 **5. Conclusion**

Based on an 8-year field-based study, the biochar rate of 30 t ha⁻¹ caused a positive 566 priming effect on n-SOC, while higher rates of 60 t ha⁻¹ and 90 t ha⁻¹ had a similar 567 negative effect priming effect, indicating biochar rate lower than 30 t ha⁻¹ may be not 568 feasible on the investigated wheat-maize rotation system. Further, we found that, 569 following biochar application, the altered soil aggregate distribution along with the 570 change in n-SOC content in aggregates with different size classes leaded to the 571 change in total n-SOC content. Moreover, following biochar application, in 572 aggregates with different size classes (no biochar in aggregates of $< 53 \mu m$), the 573 alteration of wheat-derived n-SOC was more pronounced compared with 574 maize-derived n-SOC, which predominately accounted for the alteration of n-SOC. 575 576 For the deeper mechanisms, how aggregates are reorganized and the change in microbial activity following different biochar rates could be potential keys, which 577 needs further clarification. In addition, in the perspective of alleviating n-SOC 578 degradation and increasing carbon sequestration, the feasible amount of applied 579 580 biochar on other soil ecosystems should be investigated.

582 6. Acknowledgments

This work was supported by the National Key Research Projects (Grant numbers: 2017YFD0200801-02), the National Natural Science Foundation of China (No. 41171211), the National Key Research Projects (Grant numbers: 2018YFD0300505), and the National Wheat Industry Technology System (CARS301). All authors showed their great appreciation to the technical staff working for this long-term field experiment.

589 7. References

- 590 Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., Wessolek, G, 2013. Impact of biochar and 591 hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202, 592 183-191. 593 Baiamonte, G., Crescimanno, G., Parrino, F., De Pasquale, C., 2019. Effect of biochar on the physical 594 and structural properties of a desert sandy soil. Catena 175, 294-303. 595 Balesdent, J., Mariotti, A., Guillet, B., 1987. Natural ¹³C abundance as a tracer for studies of soil 596 organic matter dynamics.Soil Biol. Biochem. 19, 25-30. 597 Bhattacharyya, R., Kundu, S., Srivastva, A.K., Gupta, H.S., Prakash, V., Bhatt, J.C., 2011. Long term 598 fertilization effects on soil organic carbon pools in a sandy loam soil of the Indian sub-himalayas. 599 Plant Soil 341, 109-124. 600 Blanco-Canqui, H., 2017. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 81, 687-711. 601 Brodowski, S., John, B., Flessa, H., Amelung, W., 2006. Aggregate-occluded black carbon in soil. Eur.
- 602 J. Soil Sci. 57, 539-546.
- Burrell, L.D., Zehetner, F., Rampazzo, N., Wimmer, B., Soja, G., 2016. Long-term effects of biochar
 on soil physical properties. Geoderma 282, 96-102.
- Buyanovsky, G., Wagner, G., 1996. Crop residue input to soil organic matter on Sanborn Field. In:
- Paul, E.A., Paustian, K., Elliot, E.T., Cole, C.V. (Eds.), Soil Organic Matter in Temperate

- 607 Agroecoystems: Long-Term Experiments in North America. CRPC Press Inc., Boca Raton, FL,
- 608 pp. 73-84.
- 609 Chan, K.Y., Van Zwieten, L., Meszaros, I., Downie, A., Joseph, S., 2008. Agronomic values of
- 610 greenwaste biochar as a soil amendment. Soil Res. 45, 629-634.
- 611 Chen, L.J., Jiang, Y.J., Liang, C., Luo, Y., Xu, Q., Han, C. Zhao Q.G., Sun, B., 2019. Competitive
- 612 interaction with keystone taxa induced negative priming under biochar amendments. Microbiome
- **613** 7, 77.
- 614 Dai, Z., Meng, J., Muhammad, N., Liu, X., Wang, H., He, Y., Brookes, P.C., Xu, J., 2013. The
- 615 potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from
- 616 different feedstocks. J. Soil. Sediment. 13, 989-1000.
- 617 De Gryze, S., Six, J., Merckx, R., 2006. Quantifying water-stable soil aggregate turnover and its
- 618 implication for soil organic matter dynamics in a model study. Eur. J. of Soil Sci. 57, 693-707.
- 619 Dong, X.L, Guan, T.Y., Li, G.T., Lin, Q.M., Zhao, X.R., 2016. Long-term effects of biochar amount on
- 620 the content and composition of organic matter in soil aggregates under field conditions. J. Soil.
- 621 Sediment. 16, 1481-1497.
- 622 Dong, X.L., Li, G.T., Lin, Q.M., Zhao, X.R., 2017. Quantity and quality changes of biochar aged for 5
 623 years in soil under field conditions. Catena 159, 136-143.
- 624 Dong, X.L., Singh, B.P., Li, G., Lin, Q.M., Zhao, X.R., 2018. Biochar application constrained native
- 625 soil organic carbon accumulation from wheat residue inputs in a long-term wheat-maize cropping
- 626 system. Agr. Ecosyst. Environ. 252, 200-207.

- 627 Duan, M.L., Li, H.C., Gu, J., Tuo, X.X., Sun, W., Qian, X., Wang, X.J., 2017. Effects of biochar on
- reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic
- bacteria in soil and lettuce. Environ. Pollut. 224, 787-795.
- 630 Duong, T.T.T., Baumann, K., Marschner, P., 2009. Frequent addition of wheat straw residues to soil
- enhances carbon mineralization rate. Soil Biol. Biochem. 41, 1475-1482.
- 632 Elliott E. T., 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated
- 633 soils. Soil Sci. Soc. Am. J. 50, 627-633.
- 634 Fang, Y., Singh, B., Singh, B.P., Krull, E., 2014. Biochar carbon stability in four contrasting soils. Eur.
- 635 J. Soil Sci. 65, 60-71.
- Fierer, N., Schimel, J.P., 2002. Effects of drying-rewetting frequency on soil carbon and nitrogen
 transformations. Soil Biol. Biochem. 34, 777-787.
- 638 Glaser, B., Lehmann, J., Zech, W., 2002. Ameliorating physical and chemical properties of highly
- 639 weathered soils in the tropics with charcoal–a review. Biol. Fert. Soils. 35, 219-230.
- 640 Gul, S., Whalen, J.K., Thomas, B.W., Sachdeva, V., Deng, H., 2015. Physico-chemical properties and
- 641 microbial responses in biochar-amended soils: mechanisms and future directions. Agric. Ecosyst.
- **642** Environ. 20, 46-59.
- 643 Gupta, V.V.S.R., Germida, J.J., 1988. Distribution of microbial biomass and its activity in different soil
- aggregate size classes as affected by cultivation. Soil Biol. Biochem. 20, 777-786.
- Hardie, M., Clothier, B., Bound, S., Oliver, G., Close, D., 2014. Does biochar influence soil physical
- 646 properties and soil water availability?. Plant Soil 376, 347-361.

- 647 Herath, H.M.S.K., Camps-Arbestain, M., Hedley, M., Van Hale, R., Kaal, J., 2014. Fate of biochar in
- 648 chemically-and physically-defined soil organic carbon pools. Org. Geochem. 73, 35-46.
- 649 Hu, L., Cao, L., Zhang, R., 2014. Bacterial and fungal taxon changes in soil microbial community
- 650 composition induced by short-term biochar amendment in red oxidized loam soil. World J.
- 651 Microbiol. Biotechnol. 30, 1085-1092.
- 652 Jeffery, S., Meinders, M.B., Stoof, C.R., Bezemer, T.M., van de Voorde, T.F., Mommer, L., van
- 653 Groenigen, J.W., 2015. Biochar application does not improve the soil hydrological function of a
- **654** sandy soil. Geoderma 251, 47-54.
- 555 Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., Hook, J., van Zwieten, L.,
- 656 Kimber, S., Cowie, A., Singh, B.P., Lehmann, J., Foidl, N., Smernik, R.J., Amonette, J.E., 2010.

657 An investigation into the reactions of biochar in soil. Soil Res. 48, 501-515.

- 658 Koide, R.T., Petprakob, K., Peoples, M., 2011. Quantitative analysis of biochar in field soil. Soil Biol.
- 659 Biochem. 43, 1563-1568.
- 660 Krull, E.S., Swanston, C.W., Skjemstad, J.O., McGowan, J.A., 2006. Importance of charcoal in
- determining the age and chemistry of organic carbon in surface soils. J. Geophys. Res-Biogeo.111, G4.
- Lehmann, J., Joseph, S., 2015. Biochar for environmental management: science, technology and
 implementation. Lehmann, J., Joseph, S., Eds., Routledge: Abingdon, UK, pp. 1-12.
- 665 Lehmann, J., Gaunt, J., Rondon, M., 2006. Bio-char sequestration in terrestrial ecosystems–a review.
- 666 Mitig. Adapt. Strat. Gl. 11, 403-427.

- 667 Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D., 2011. Biochar
- effects on soil biota–a review. Soil Biol. Biochem. 43, 1812-1836.
- 669 Liang, F., Li, G.T., Lin, Q.M., Zhao, X.R., 2014. Crop yield and soil properties in the first 3 years after
- biochar application to a calcareous soil. J. Integr. Agric. 13, 525-532.
- 671 Loeppert, R., Suarez, L., 1996. Carbonate and gypsum. In: Sparks, D.L. (Ed.), Methods of Soil
- 672 Analysis. Part 3. Chemical Methods. Soil Science Society of America, Madison, WI, pp. 437-474.
- 673 Lu, F., Wang, X.K., Han, B., Ouyang, Z.Y., Duan, X.N., Zheng, H., Miao, H., 2009. Soil carbon
- 674 sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland.
- **675** Global Change Biol. 15, 281-305.
- 676 Lu, W.W., Ding, W.X., Zhang, J.H., Li, Y., Luo, J.F., Bolan, N., Xie, Z.B., 2014. Biochar suppressed
- 677 the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect.
- 678 Soil Biol. Biochem. 76, 12-21.
- 679 Mueller, C.W., Gutsch, M., Kothieringer, K., Leifeld, J., Rethemeyer, J., Brueggemann, N.,
- 680 Kögel-Knabner, I., 2014. Bioavailability and isotopic composition of CO₂ released from incubated
 681 soil organic matter fractions. Soil Biol. Biochem. 69, 168-178.
- 682 Neff, J.C., Townsend, A.R., Gleixner, G., Lehman, S.J., Turnbull, J., Bowman, W.D., 2002. Variable
- effects of nitrogen additions on the stability and turnover of soil carbon. Nature 419, 915-917.
- 684 Nguyen, T.T., Cavagnaro, T.R., Thanh Ngo, H.T., Marschner, P., 2016. Soil respiration, microbial
- biomass and nutrient availability in soil amended with high and low C/N residue-influence of

- 686 interval between residue additions. Soil Biol. Biochem. 95, 189-197.
- 687 Novak, J.M., Busscher, W.J., Laird, D.L., Ahmedna, M., Watts, D.W., Niandou, M.A.S., 2009. Impact
- of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 174, 105-112.
- 689 Ouyang, L., Wang, F., Tang, J., Yu, L., Zhang, R., 2013. Effects of biochar amendment on soil
- aggregates and hydraulic properties. J Soil Sci. Plant Nut. 13, 991-1002.
- 691 Plaza, C., Giannetta, B., Fernández, J.M., López-de-Sá, E.G., Polo, A., Gascó, G., .Méndez, A.,
- 692 Zaccone, C., 2016. Response of different soil organic matter pools to biochar and organic
- 693 fertilizers. Agr. Ecosyst. Environ. 225, 150-159.
- 694 Rhoades, J.D., 1986. Cation exchange capacity. In: Page, A. L., et al., editor. Methods of soil analysis,

part II. Chemical and microbiological properties, 2nd ed. ASA and SSSA, Madison, WI: Agron.

696 Monogr, 1986. pp. 149-157.

- 697 Rex, D., Schimmelpfennig, S., Jansen-Willems, A., Moser, G., Kammann, C., Müller, C., 2015.
- 698 Microbial community shifts 2.6 years after top dressing of Miscanthus biochar: hydrochar and
- 699 feedstock on a temperate grassland site. Plant Soil 397, 261-271.
- 700 Rittl, T.F., Novotny, E.H., Balieiro, F.C., Hoffland, E., Alves, B.J.R, Kuyper, T.W., 2015. Negative
- 701 priming of native soil organic carbon mineralization by oilseed biochars of contrasting quality.
- 702 Eur. J. Soil Sci. 66, 714-721.

- 703 Senbayram, M., Saygan, E.P., Chen, R.R, Aydemir, S., Kaya, C., Wu, D., Bladogatskaya, E., 2019.
- Effect of biochar origin and soil type on the greenhouse gas emission and the bacterial community
- structure in N fertilised acidic sandy and alkaline clay soil. Sci. Total Environ. 660, 69-79.
- 706 Singh, B.P., Cowie, A.L., 2014. Long-term influence of biochar on native organic carbon
- 707 mineralisation in a low-carbon clayey soil. Sci. Rep-UK. 4, 3687.
- Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., 2006. Bacterial and fungal contributions to carbon
 sequestration in agroecosystems. Soil Sci. Soc. Am. J. 70, 555-569.
- 710 Six, J., Paustian, K., Elliott, E., Combrink, C., 2000. Soil structure and organic matter I. distribution of
- 711 aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 64, 681-689.
- 712 Smith, J.L., Collins, H.P., Bailey, V.L., 2010. The effect of young biochar on soil respiration. Soil Biol.
- 713 Biochem. 42, 2345-2347.
- 714 Smith, P., 2016. Soil carbon sequestration and biochar as negative emission technologies. Global
- 715 Change Biol., 22, 1315-1324.
- 716 Steinbeiss, S., Gleixner, G., Antonietti, M., 2009. Effect of biochar amendment on soil carbon balance
 717 and soil microbial activity. Soil Biol. Biochem. 41, 1301-1310.
- 718 Stemmer, M., Gerzabek, M.H., Kandeler, E., 1998. Organic matter and enzyme activity in particle-size
- fractions of soils obtained after low-energy sonication. Soil Biol. Biochem. 30, 9-17.
- 720 Sun, F.F., Lu, S.G., 2014. Biochars improve aggregate stability, water retention, and pore-space
- 721 properties of clayey soil. J. Plant Nutr. Soil Sc. 177, 26-33.

- 722 Sun, Z.C., Moldrup, P., Elsgaard, L., Arthur, E., Bruun, E.W., Hauggaard-Nielsen, H., de Jonge, L.W.,
- 723 2013. Direct and indirect short-term effects of biochar on physical characteristics of an arable724 sandy loam. Soil Sci. 178, 465-473.
- 725 Sun, Z.C., Arthur, E., de Jonge, L.W., Elsgaard, L., Moldrup, P., 2015. Pore structure characteristics
- after 2 years of biochar application to a sandy loam field. Soil Sci. 180, 41-46.
- Talbot, J.M., Treseder, K.K., 2012. Interactions among lignin, cellulose, and nitrogen drive litter
 chemistry-decay relationships. Ecology 93, 345-354.
- 729 Tian, J., Wang, J.Y., Dippold, M., Gao, Y., Blagodatskaya, E., Kuzyakov, Y., 2016. Biochar affects
- soil organic matter cycling and microbial functions but does not alter microbial community
 structure in a paddy soil. Sci. Total Environ. 556, 89-97.
- 732 Tisdall, J., Oades J.M., 1982. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33,
- **733** 141-163.
- 734 Tisdall, J.M., Smith, S.E., Rengasamy, P., 1997. Aggregation of soil by fungal hyphae. Soil Res. 35,
 735 55-60.
- 736 Van Zwieten, L., Kimber, S., Morris, S., Chan, K.Y., Downie, A., Rust, J., Joseph, S., Cowie, A., 2010.
- 737 Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil
- **738** fertility. Plant Soil 327, 235-246.
- 739 Wang, C., Liu, J.Y., Shen, J.L., Chen, D., Li, Y., Jiang, B.S., Wu, J.S., 2018. Effects of biochar
- 740 amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A

- 741 4-year field experiment. Agr. Ecosyst. Environ. 262, 83-96.
- 742 Wang, J.Z., Wang, X.J., Xu, M.G., Feng, G., Zhang, W.J, Yang, X.Y., Huang, S.M., 2015.
- 743 Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north
- 744 China. Sci. Rep-UK. 5 11409.
- 745 Wardle, D.A., Nilsson, M.C., Zackrisson, O., 2008. Fire-derived charcoal causes loss of forest
- 746 humus. Science 320, 629.
- 747 Weng, Z. H., Van Zwieten, L., Singh, B.P., Tavakkoli, E., Joseph, S., Macdonald, L.M., Rose, T.J.,
- 748 Kimber, S.W.L., Morris, S., Cozzolino, D., Araujo, J.R., Archanjo, B.S., Cowie, A., 2017.
- 749 Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat. Clim. Change, 7,
 750 371-376.
- Wynn, J.G., Bird, M.I., 2007. C4-derived soil organic carbon decomposes faster than its C3 counterpart
 in mixed C3/C4 soils. Global Change Biol. 13, 2206-2217.
- 753 Ye, J., Joseph, S.D., Ji, M., Nielsen, S., Mitchell, D.R.G., Donne, S., Horvat, J., Wang, J.L., Munroe,
- P., Thomas, T., 2017. Chemolithotrophic processes in the bacterial communities on the surface of
- mineral-enriched biochars. ISME J. 11, 1087-1101.
- 756 Zhang, M., Cheng, G., Feng, H., Sun, B.H., Zhao, Y., Chen, H.X., Chen J., Dyck, M., Wang, X.D.,
- 757 Zhang, A.F., 2017. Effects of straw and biochar amendments on aggregate stability, soil organic
 758 carbon, and enzyme activities in the Loess Plateau, China. Environ. Sci. Pollut. R. 24,
 759 10108-10120.
- 760 Zhang, D., Hui, D., Luo, Y., Zhou, G., 2008. Rates of litter decomposition in terrestrial ecosystems:

- 761 global patterns and controlling factors. J. Plant Ecol. 1, 85-93.
- 762 Zhang, J.J., Wei, Y.X., Liu, J.Z., Yuan, J.C., Liang, Y., Ren, J, Cai, H.G., 2019. Effects of maize straw
- 763 and its biochar application on organic and humic carbon in water-stable aggregates of a Mollisol
- in Northeast China: A five-year field experiment. Soil Till. Res. 190, 1-9.
- 765 Zheng, H., Wang, X., Luo, X.X., Wang, Z.Y., Xing, B.S., 2018. Biochar-induced negative carbon
- 766 mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial
- 767 modulation. Sci. Total Environ. 610, 951-960.
- 768 Zhou, H.M., Zhang, D.X., Wang, P., Liu, X.Y., Cheng, K., Li, L.Q., Zheng, J.W., Zhang, X.H., Zheng,
- 769 J.F., Crowley, D., van Zwieten, L., Pan, G.X., 2017. Changes in microbial biomass and the
- 770 metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agr. Ecosyst.
- 771 Environ. 239, 80-89.
- 772 Zimmerman, A.R., Gao, B., Ahn, M.Y., 2011. Positive and negative carbon mineralization priming
- effects among a variety of biochar-amended soils. Soil Biol. Biochem. 43, 1169-1179.

775 Figure captions

Fig. 1. Total organic carbon (TOC) and native soil organic carbon (n-SOC) contents of soil in the

B0, B30, B60, and B90 treatments, representing biochar application rate of 0, 30, 60 and 90 t ha⁻¹,

- respectively. Data are shown as the mean \pm standard error (n=3). Different letters indicate the
- significant differences in TOC or n-SOC content between the treatments (p<0.05)
- Fig. 2. Total organic carbon (TOC) and native soil organic carbon (n-SOC) contents in different
- sized aggregates in the treatments (B0, B30, B60, B90, representing biochar application rate of 0,
- 782 30, 60 and 90 t ha⁻¹, respectively). Data are shown as the mean \pm standard error (n=3). Different
- 783 letters indicate the significant differences in TOC or n-SOC content between the treatments 784 (p<0.05).
- Fig. 3. The contribution of wheat and maize straw to native soil organic carbon (n-SOC) in aggregates of different sizes in the treatments with different biochar rates (B0, B30, B60, B90, representing biochar application rate of 0, 30, 60 and 90 t ha⁻¹, respectively) and the relation between the n-SOC derived from wheat straw and n-SOC in aggregates of different sizes following increased biochar rates shown by the head of the dashed arrow. Data are shown as the mean \pm standard error (n=3). Different letters indicate the significant differences in wheat-derived SOC between the treatments (p<0.05).
- Fig. 4. The proportion of native soil organic carbon (n-SOC) in each aggregate size class to total soil $(10^{-2} \text{ g kg}^{-1})$ in different treatments (B0, B30, B60, and B90, representing biochar application rate of 0, 30, 60 and 90 t ha⁻¹, respectively). Data are shown as the mean ± standard error (n=3). Different letters indicate the significant difference in the proportion of n-SOC in each aggregate

796 size class to total soil between the different biochar rates (p < 0.05).

797

799 ●	<u>30 t ha⁻¹ of Biochar biochar decreased</u> rates variedly altered native soil organic-
800	carbonSOC after 8-year application, but inverse in 60 t ha ⁻¹ and 90 t ha ⁻¹
801 🗕	Biochar concentration content was higher in aggregates with larger size
802 ●	Increase in biochar rate increased proportion of aggregates of 2000-1000 µm
803	 Biochar of 90 t ha⁻¹-significantly altered native SOC in aggregates
804	above 53 μm
805	 Biochar altered native soil organic carbon by changing aggregation
806	and inside SOC
807 ●	The cChangedd wheat-derived organic carbonSOC mainly accounted for the
808	native SOC content_variation in aggregates
809	
810	
811	

812 Figure 1

Figure 2

820 Figure 3

823

824 Figure 4

825

826

827

828 Tables

829 Table 1. Soil aggregate size distribution of soil including biochar (BC) and excluding biochar at

830 different biochar rates after 8-year application, i.e., B0, B30, B60, and B90 presenting the

831	treatments of 0,	30, (60 and 90	t ha ⁻¹	biochar a	application r	ates, respectiv	vely.
-----	------------------	-------	-----------	--------------------	-----------	---------------	-----------------	-------

Treature and	2000-1000 μm (g 100g ⁻¹)			1000-250 μm (g 100g ⁻¹)			250-53	
Treatment	include BC	exclude BC		include BC	exclude BC	-	include BC	
В0	2.23±0.09d	2.23±0.09d		12.83±0.35b	12.83±0.35b	_	41.43±1.80b	
B30	4.03±0.18c	4.00±0.18c		11.47±0.18b	11.44±0.19 <mark>b</mark> e		53.50±1.61a	
B60	6.03±0.18b	5.98±0.17b		22.83±1.40a	22.68±1.40 <u>a</u> b		33.23±1.30c	
B90	6.61±0.15a	6.41±0.15a		10.43±0.41b	10.22±0.36 <mark>ba</mark>		35.43±0.64c	

832 *†*: no biochar detected in this aggregate size

Table 2. The loss rate using the ignition method, biochar content, and biochar C content of
different aggregates size in the treatments, i.e., B0, B30, B60, and B90 presenting the treatments
of 0, 30, 60 and 90 t ha⁻¹ biochar application rates, respectively.

	Trootmonts	Soil aggregates (µm)					
)	Treatments	2000-1000	1000-250	250-53			
nition	B0	4.59±0.04c	4.04±0.04b	2.17±0.02a			
	B30	4.99±0.10b	4.18±0.11b	2.19±0.06a			
	B60	5.13±0.08b	4.44±0.06b	2.31±0.15a			
	B90	6.32±0.12a	5.25±0.20a	2.35±0.08a			
ntent	B0	0c	0b	0a			
l)	B30	6.77±1.30b	3.74±0.92b	1.45±0.32a			
	B60	9.06±1.65b	6.65±0.75b	2.31±2.23a			
	B90	29.08±0.86a	20.22±3.71a	3.01±1.54a			
content	B0	0c	0b	0a			
l)	B30	3.47±0.68b	1.92±0.92b	0.75±0.17a			
	B60	4.65±0.86b	3.41±0.38b	1.19±1.15a			
	B90	14.91±0.63a	10.41±1.91a	1.55±0.79a			

836