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Abstract
The phoD-harbouring bacterial community is responsible for much of the hydrolysis of organic phosphorus (Po) in soils and is
therefore significant for the improvement of soil phosphorus (P) availability. However, the distribution of phoD-harbouring
bacterial community structure and how it regulates the soil P fractions in steppe soils remain largely unknown. It is necessary to
assess these relationships to maintain sustainable development on the steppe. We sampled soils from three steppe types across
InnerMongolia, China. Illumina high-throughput sequencing was used to quantify the bacterial phoD gene. The dominant phoD-
harbouring genera were Amycolatopsis (5–11%), Bacillus (6–13%), Bradyrhizobium (3–8%) and Pseudomonas (3–5%) across
all steppe soils. The relative abundances of phoD-harbouring Amycolatopsis and Bacillus increased significantly as available P
(AP) decreased, while the relative abundances of Bradyrhizobium, Pseudomonas and Methylobacterium were significantly
positively correlated with AP content. Redundancy analysis showed that the soil stoichiometric ratio of carbon (C), nitrogen
(N) and P had a strong effect on the phoD-harbouring bacterial community structure. Correlation analyses further indicated that
only phoD-harbouring Dietzia and Sphingomonas had a significant correlation with alkaline phosphatase activity and that they
increased P availability by mineralizing Po. phoD-harbouring Frankia and Methylobacterium were positively correlated with
labile-Po and negatively correlated with non-labile inorganic P. Moreover, phoD-harbouring Bacillus and Bradyrhizobium
promoted the conversion of the non-labile Po pool into the labile Po pool, which can be attributed to microbial immobilization.
Not all bacteria carrying the phoD gene promote soil P availability through mineralization or are induced not only in a P-
repressible manner. Members of the phoD-harbouring bacterial community employ flexible P use strategies and can be strongly
activated by their nutrient preferences and environmental conditions.
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1 Introduction

Phosphorus (P) limitation in natural ecosystems is a global
issue (Vitousek et al. 2010; Atere et al. 2018), and 30–80%
of the total P (TP) in grassland soils is organic P (Po) (Sharma
et al. 2013). Because microorganisms and plants absorb P
mainly as inorganic orthophosphate (HPO4

2− or H2PO4
−)

from the soil solution, Po can only be absorbed directly by
plants after mineralization by phosphatases (Nannipieri et al.

2011; Sun et al. 2019). Therefore, the extracellular enzymes
facilitating the mineralization of Po compounds may play an
important role in plant nutrition in grassland soils (Rui et al.
2009). Previous studies have confirmed that many organisms
normally produce phosphatases (i.e. acid (ACP, EC 3.1.3.2)
and alkaline phosphatases (ALP, EC 3.1.3.1)), phytases and
nucleotidases when facing P scarcity (Ragot et al. 2015).
These are crucial enzymes that are capable of hydrolysing Po
to bioavailable P in soil (Nannipieri et al. 2011; Ye et al.
2017). ALP can hydrolyse phosphomonoesters, which are
generally the dominant fraction of Po and can represent up to
90% of the Po in soil (Condron et al. 2005; Nannipieri et al.
2011), and therefore ALP is important driver of Po turnover. In
most bacteria, the Pho regulon includes functional genes
encoding ALP such as phoD, phoA and phoX (Santos-Beneit
2015; Ragot et al. 2015). Considering that the phoD gene has
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been identified widely in the soil bacterial community, it is a
useful molecular marker to investigate soil Po transformation
processes that are largely controlled by bacteria (Tan et al.
2013; Luo et al. 2017).

phoD-Harbouring bacteria have been detected in various
ecosystems such as forests (Shange et al. 2012; Bergkemper
et al. 2016), grassland (Neal et al. 2017), bare fallow (Jangid
et al. 2008), bogs (Keith et al. 2012) and arable land (Neal et al.
2017). The key genera identified in grassland soils using primers
designed by Ragot et al. (2015) were Bradyrhizobium,
Pseudomonas, Bacillus, Massilia, Stenotrophomonas and
Streptomyces (Ragot et al. 2016), while Tan et al. (2013) used
primers designed by Sakurai et al. (2008) and found that the
dominant phoD-harbouring phyla in pasture soils were included
mainly Proteobacteria, Actinobacteria and Cyanobacteria. Due
to the differences in primers and observed levels, the current
research results are not comparable, and it is difficult to identify
the core phoD-harbouring bacterial community in grassland
soils. Therefore, further study is needed.

Studies have shown that the soil type (Ragot et al. 2017),
land use (Ragot et al. 2016; Neal et al. 2017), vegetation
(Wang et al. 2012) and fertilizer management (Berg and
Smalla 2009) indirectly affect the phoD-harbouring bacterial
community by affecting soil properties. Soil organic matter
(SOM) is an important driver of the phoD-harbouring bacte-
rial community structure in subtropical orchard soils (Cui
et al. 2015; Espinosa et al. 2017), and pH has a significant
effect on the phoD-harbouring bacterial community structure
in grasslands and in cropping systems (Wang et al. 2012;
Ragot et al. 2015). However, the soil pH also affects the avail-
ability of nutrients such as P by modifying adsorption and
desorption reactions (Ragot et al. 2016), further influencing
the microbial community structure. This makes it difficult to
distinguish the effect of nutrient availability on the microbial
community from that of pH. Many studies have reported that
variations in soil microbial community structure can be attrib-
uted to differences in nutrient stoichiometry (Sinsabaugh et al.
2013; Dai et al. 2018; Cui et al. 2019) because different mi-
croorganisms have different nutritional preferences (Shade
et al. 2014; Jousset et al. 2017). Moreover, r-strategists grow
faster in response to available carbon (C) and require larger
amounts of P than oligotrophs (Fierer et al. 2007; Luo et al.
2019). Therefore, the present studies are still very limited with
regard to understanding the effects of environmental factors
on the phoD-harbouring bacterial community structure in
soils, especially in grassland soils with poor environmental
homogeneity. In addition, some studies have shown that not
all bacteria carrying the phoD gene play an important role in
the secretion of ALP (Fraser et al. 2015), so how phoD-
harbouring bacteria participate in soil P transformation re-
mains largely unknown. To obtain a comprehensive picture
of the processes through which bacteria are involved in P
turnover, more information is needed about the distribution

of the phoD-harbouring bacterial community in the soil and
its roles in the transformation of soil P fractions.

The Inner Mongolia steppe represents approximately 22%
of the grassland in China (Zhu et al. 2020) and has an indis-
pensable position with regard to ecosystem protection, sand-
storm prevention, soil and water conservation and climate
regulation (Miu and Liu 2013). However, previous studies
have shown that soil P levels have seriously restricted the
development of Inner Mongolia steppe productivity
(Compton et al. 2000; Elser et al. 2007) and soil P exists
mainly in the form of Po (Zhu et al. 2020). Therefore, it is
urgent to improve soil P availability in this region through
biotic processes such as Po mineralization. However, the dis-
tribution and function of the Po mineralizing bacterial com-
munity in this region remain to be elucidated. In this study, we
surveyed three types of steppe soil (i.e. desert steppe, typical
steppe and meadow steppe) in Inner Mongolia and investigat-
ed the phoD gene using primers described by Ragot et al.
(2015). We aimed to (1) investigate the key bacteria
harbouring the phoD gene in steppe soil; (2) understand the
factors driving the phoD-harbouring bacterial community and
its response to changes in soil properties; and (3) illustrate the
process by which phoD-harbouring bacteria regulate P trans-
formation. We hypothesized that (1) the phoD-harbouring
bacterial community structure in the different steppe types
would be different; (2) the soil available P (AP) and stoichio-
metric ratios of C, nitrogen (N) and P would be strong drivers
of the phoD-harbouring bacterial community; and (3) micro-
organisms would employ flexible P use strategies that might
vary even within the same taxon.

2 Materials and Methods

2.1 Soil Sampling and Sample Preparation

Soil samples were collected from 15 sites in the Inner
Mongolia Autonomous Region (37° 24′–53° 23′ N, 97° 12′–
126° 04′ E) in July 2017.The sites covered three types of
steppe habitats: desert steppe, typical steppe and meadow
steppe. For each steppe type, 5 sampling sites were selected.
Each sample was mixed with at least 20 individual surface-
soil cores (0–15 cm). These soils were mainly derived from
granite. The soil type at each site was identified based on
FAO-UNESCO 1974. More sampling details are showed in
Table 1 and provided in Zhu et al. (2020).

After removing plant residues, roots and stones, soil sub-
samples were immediately stored at − 80 °C to be used for
DNA extraction and at 4 °C to be used to determine soil
phosphatase activity. The remaining composite soil samples
were air dried and sieved to 2 mm for the analyses basic soil
properties.
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2.2 Soil Analysis

2.2.1 Chemical Analyses

The soil pH was determined at a soil:water ratio of 1:2.5 ratio
(w/v) (Skjemstad and Baldock 2007). SOM was measured by
potassium dichromate digestion (Nelson and Sommers 1982).
Soil total N (TN) was determined using an elemental analyser.
Soil TP was determined by HClO4-H2SO4 digestion followed
by colorimetric analysis (Kuo 1996). Total Po was measured
by the ignition method (Saunders and Williams 1955). Soil
AP was extracted by 0.5 M NaHCO3 with a soil/solution ratio
of 1:20 (Olsen et al. 1954), and the P in solution was deter-
mined using molybdenum blue colorimetry at 880 nm
(Murphy and Riley 1962). The soil P fractions were obtained
according to a previously published article (Zhu et al. 2020).
Potential ALP activity at pH 11.0 was analysed using the
method described by Wu et al. (2006). Briefly, 0.5 g of fresh
soil was incubated with p-nitrophenyl phosphate (pNPP) as a
substrate at 37 °C. ALP activity was expressed as μg pNP

produced per g soil dry weight per hour. The values of all soil
properties are expressed in dry weight equivalents. A detailed
description of the soil properties is shown in Table 2.

2.2.2 DNA Extraction

Genomic DNA was extracted in duplicate from 0.50 g frozen
soil using a PowerSoil® DNA Isolation Kit (MoBio,
Carlsbad, CA, USA) following the manufacturer’s instruc-
tions. The DNA concentration and quality were assessed by
the A260/280 and A260/230 ratios using a NanoDrop ND-
2000 spectrophotometer (Thermo Scientific Wilmington, DE,
USA). The isolated DNA was stored at − 80 °C for further
analysis.

2.2.3 High-Throughput Sequencing of the phoD Gene
Amplicon and Data Processing

The primer pair for the phoD gene and the PCR conditions was
performed as previously described by Ragot et al. (2015).

Table 1 The information of sampling sites

Site no. Coordinates MAT (°C) MAP (mm) NDVI Steppe types Soil types Vegetation types

1 N41° 49.925′ 4.24 280.13 0.40 Desert steppe Calcic Xerosols Stipa breviflora Griseb;
Stipa klemenzii RoshevE111° 53.842′

2 N42° 47.267′ 5.58 193.15 0.30
E112° 40.77′

3 N43° 10.317′ 5.09 180.2 0.23
E112° 56.739′

4 N43° 24.680′ 4.93 178.52 0.17
E113° 07.275′

5 N43° 57.072′ 2.49 241.35 0.36
E114° 38.685′

6 N43° 53.996′ 2.16 271.3 0.47 Typical steppe Calcic Kastanozems Leymus chinensis;
Stipa grandisE115° 20.438

7 N44° 43.960′ 2.04 313.62 0.59
E117° 27.602′

8 N44° 50.291′ 1.99 315.57 0.56
E117° 27.721′

9 N45° 58.978′ 2.05 335.48 0.61
E119° 10.382′

10 N46° 07.554′ −0.75 449.15 0.66
E119° 12.818′

11 N49° 30.269′ −0.63 377.24 0.69 Meadow steppe Calcic Chernozems Leymus chinensis;
Stipa baicalensisE119° 47.364′

12 N49° 19.213′ −0.77 368.02 0.66
E119° 43.256′

13 N49° 18.130′ −0.16 336.73 0.69
E119° 06.102′

14 N49° 27.104′ −0.15 308.8 0.56
E118° 15.772′

15 N49° 26.842′ −0.01 326.4 0.58
E118° 38.516′

aMAT mean annual temperature, MAP mean annual precipitation, NDVI the normalized difference vegetation index
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Briefly, primers (phoD-F733: 5′-TGGGAYGATCAYGARGT-
3′ and phoD-R1083: 5′-CTGSGCSAKSACRTTCCA-3′) were
used to amplify the phoD gene. The PCRs were run on a Bio-
Rad S1000 (Bio-Rad Laboratory, CA, USA). The amplification
conditions were as follows: 95 °C for 3 min; followed by 30
cycles at 95 °C for 5 s, 58 °C for 30 s and 72 °C for 30 s; and a
final extension at 72 °C for 10 min. The PCR products were
purified using the EZNA Gel Extraction Kit (Omega, USA).
Sequencing libraries were generated using the NEBNext®
UltraTM DNA Library Prep Kit for Illumina® (New England
Biolabs,MA, USA) following themanufacturer’s recommenda-
tions, and index codes were added. The library quality was
assessed on a Qubit@2.0 fluorometer (Thermo Fisher
Scientific, MA, USA) and an Agilent Bioanalyzer 2100 system
(Agilent Technologies, Waldbronn, Germany). Finally, the li-
brary was sequenced on an Illumina HiSeq 2500 platform, and
250-bp paired-end reads were generated (GuangdongMagigene
Biotechnology Co., Ltd., Guangzhou, China). Sequence analy-
sis was performed usingUSEARCH software (V10). Sequences
with ≥ 97% similarity were assigned to the same operational
taxonomic unit (OTU).

2.3 Statistical Analysis

One-way ANOVA with steppe types as a factor was per-
formed for the community composition of phoD-harbouring
bacteria using SPSS 24.0. α-Diversity, measured with the
Chao1 index, was used to analyse the complexity of species
diversity for each sample and was calculated with QIIME
(V1.9.1) and displayed with R software (V2.15.3). Principal
coordinate analysis (PCoA) based on a weighted UniFrac dis-
tance matrix was performed to compare the β-diversity across
all samples and was displayed by the QIIME and ggplot2
packages in R software. Additionally, to explore the linkage
between environmental factors and the structure of the phoD-
harbouring bacterial community, detrended correspondence
analysis (DCA) was performed firstly with species-sample
data to determine whether to use redundancy analysis

(RDA) or canonical correspondence analysis (CCA).
According to the result of DCA, the size of the first axis of
length of gradient is 0.5, thus choosing RDA for association
statistical analysis in R software (V2.15.3). The ggplot2 and
RColorBrewer packages in R software were used to generate
heat maps to analyse the relationship of phoD-harbouring
genera to environmental factors. Pearson’s correlation coeffi-
cient was used to investigate the potential correlation between
the phoD-harbouring bacterial diversity and composition,
ALP activity and content of soil P factions using SPSS 24.0.

3 Results

3.1 phoD-Harbouring Bacterial Community Structure

The dominant phoD-harbouring phyla in the three steppes
were Proteobacteria, Planctomycetes, Firmicutes,
Cyanobacteria and Actinobacteria (Fig. S1a). The average rel-
ative abundances of Proteobacteria and Cyanobacteria were
more than 50%. The identified phoD sequences were further
assigned to different taxonomic levels (> 1%) covering 6 clas-
ses, 10 orders, 16 families and 17 genera. The dominant genera
were Amycolatopsis (5–11%), Bacil lus (6–13%),
Bradyrhizobium (3–8%) and Pseudomonas (3–5%) (Fig. 1).
ANOVA showed that the phoD-harbouring bacterial commu-
nity in the different steppes were significantly different from
each other at the genus level (p < 0.05). The relative abun-
dances of Amycolatopsis and Bacillus decreased significantly
with the change of desert steppe to typical steppe to meadow
steppe, while Bradyrhizobium and Frankia were significantly
higher in the typical and meadow steppes than in the desert
steppe. The relative abundance of Dietzia was the highest in
the typical steppe.

The α-diversity of the phoD-harbouring bacterial commu-
nity estimated by the Chao1 index revealed significant differ-
ences among the three steppes (p < 0.05) (Fig. 2a). The Chao1
index was the lowest in the meadow steppe and the highest in

Table 2 Soil chemical properties in Inner Mongolia steppe

Steppe types pH SOM
(g kg−1)

TN
(g kg−1)

TP
(mg kg−1)

AP
(mg kg−1)

Po
(mg kg−1)

ALP
(μg pNP g−1 h−1)

Desert steppe 7.19±0.25 a 7.98±5.28 c 0.72±0.30 b 206.05±65.83 a 5.16±1.63 c 96.98±44.31 a 643.19±275.94 b

Typical steppe 7.27±0.09 a 24.41±3.07 b 1.69±0.24 a 236.52±84.64 a 9.12±1.53 b 139.49±21.89 a 1473.47±371.97 a

Meadow steppe 6.88±0.07 b 8.96±16.12 a 2.21±0.68 a 204.8±41.11 a 16.32±3.94 a 149.1±39.21 a 1046.38±328.66 ab

Mean 7.11 23.78 1.54 215.79 10.20 128.52 1054.35

CV (%) 3.08 65.06 47.73 28.31 50.74 30.87 42.52

a SOM soil organic matter, TN total nitrogen TP total phosphorus, AP available phosphorus, Po organic phosphorus, ALP alkaline phosphatase, CV
coefficient of variation
b The values represent the mean ± standard deviation (n = 5) for each steppe types. Different lowercase letters indicate significant difference (p < 0.05)
among steppe types
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the typical steppe. There was a positive correlation between
the Chao1 index and ALP activity (r = 0.65, p < 0.01) (Fig. 3).
The β-diversity comparison assessed by PCoA showed that
the phoD-harbouring bacterial community structure in all the
samples clustered into three groups according to steppe type
and that these clusters explained 58.48% of the total variation
(Fig. 2b). The β-diversity of the phoD-harbouring bacterial
community showed great variation among the desert steppe
sites.

3.2 Relationships of Environmental Factors to the
phoD-Harbouring Bacterial Community

Based on the RDA, the phoD-harbouring bacterial community
structures of all samples were clustered into three groups ac-
cording to the steppe type (Fig. 4a). The examined environ-
mental factors explained 63.8% of the total variation in the
phoD-bacterial community structure (Table 3). RDA1 and
RDA2 explained 34.16% and 14.21% of the variation in the
phoD-harbouring bacterial community, respectively. The
phoD-harbouring bacterial community structure was strongly
correlated with ALP activity (p < 0.01) and the C/P ratio
(p < 0.05); these two factors explained 36.2% of the total var-
iation. The phoD-harbouring bacterial community in the de-
sert steppe diverged from that in the other two steppes along
RDA2, which was related to the C/N ratio.

The heat map indicated that 9 out of 17 phoD-harbouring
bacteria were susceptible to environmental factors (Fig. 4b).
The C/P and N/P ratios were the most influential environmen-
tal drivers, and both influenced the relative abundance of 7 out
of 9 genera. There were strong, significant correlations be-
tween Bacillus and Methylobacterium and soil properties.
However, we found that onlyDietzia and Sphingomonaswere
closely correlated with ALP activity.

3.3 The Relationships of the phoD-Harbouring
Bacterial Community with Soil P Fractions

The soil P fractions were dominated by HCl-Pi and NaOH-Po
(Table S1). There were significant differences in the soil P
fractions among the different steppe types. The content of
labile-Po increased significantly in the order desert steppe <
meadow steppe < typical steppe, while HCl-Po showed the
opposite trend. The contents of NaOH-P and Phyt-P in the
typical steppe and HCl-Pi in the desert steppewere the highest.
There was a positive correlation between ALP activity and
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lowercase letters indicate significant differences among steppe types
(p < 0.05). Colour dots represent soil samples from different steppes
(n = 5)

1535J Soil Sci Plant Nutr (2021) 21:1531–1541



NaOH-Po (r = 0.89, p < 0.01) (Table 4) and AP content (r =
0.52, p < 0.05) (Fig. S2). The relative abundance of Dietzia
had a significantly positive correlation with NaOH-Pi. The
relative abundances of Bacillus and Bradyrhizobium were
positively correlated with labile-Po and negatively correlated
with NaOH-Po and HCl-Po, respectively (p < 0.05). The rela-
tive abundance of Frankia had a negative correlation with soil
NaOH-Pi (p < 0.01) and a positive correlation with labile-Po
(p < 0.01). The relative abundance of Methylobacterium was

positively correlated with labile-Po and negatively correlated
with HCl-Pi (p < 0.05).

4 Discussion

4.1 phoD-Harbouring Bacterial Community
Composition and Diversity

It is essential to understand the distribution of phoD-
harbouring bacterial community in ecosystems as they influ-
ence a variety of important ecosystem processes related to soil
P turnover and biogeochemical cycling (Chhabra et al. 2012;
Jorquera et al. 2014). In this study, the phoD gene was found
mainly in 5 bacterial phyla (Fig. S1a). In contrast, Ragot et al.
(2015) amplified 13 phyla from grassland soils using the same
primers. They observed phoD-harbouring Acidobacteria,
Bacteroidetes, Chloroflexi, Deinococcus-Thermus,
Nitrospirae, Spirochaetes and Verrucomicrobia. This differ-
ence may be explained by the smaller variation in soil prop-
erties and the lower microbial diversity in this study than in
previous studies. More specifically, the dominant phoD-
harbouring bacterial genera were Amycolatopsis, Bacillus,
Bradyrhizobium , Pseudomonas , Streptomyces and
Xanthomonas (Fig. 1), while Scytonema, Rhodoplanes,
Kaistia, Rhizobacter and Methylibium were observed by Sun
et al. (2015). Ragot et al. (2015) captured a particularly large
diversity of phoD-harbouring genera, including Actinomyces,
Arthrobacter , Micrococcus , Streptosporangium ,
Azorhizobium , Rhodospiri l lum , Caulobacter and
Variovorax. These findings revealed differences in the
phoD-harbouring bacterial genera in different grassland eco-
systems due to the specific geographical location, climate and
soil type (Ragot et al. 2017; Luo et al. 2017). However, the
dominant bacterial community at both phylum and genus
levels were similar in all sample plots in our study, suggesting
that there was a remarkable degree of genetic similarity and a
core phoD-harbouring bacterial microbiome across the Inner
Mongolia steppe soils. This study showed that high relative
abundances of phoD-harbouring Amycolatopsis, Bacillus,
Bradyrhizobium, Streptomyces and Pseudomonas may have
made great contributions to Po mineralization. Previous stud-
ies have found that the genus Pseudomonas also solubilizes Pi
(Kundu et al. 2009; Yu et al. 2011). Therefore, Pseudomonas
may be involved in both the mineralization of Po and the
solubilization of Pi.

Although the composition of the phoD-harbouring bacteri-
al community was similar among the three steppe soils, there
was great variability in the relative abundances of phoD-
harbouring bacterial genera (Fig. 1). This result was consistent
with our hypothesis. For example, the relative abundance of
Bacillus was the highest in the desert steppe, while that of
Bradyrhizobium was the lowest. Bacillus is a gram-positive

r = 0.65 (p <0.01)
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Fig. 3 The relationship between alkaline phosphatase (ALP) activity and
α-diversity estimated by Chao1 index of phoD-harbouring bacterial com-
munity (n = 15). Data points represent values from soils collected from 15
sites across different steppe types

Table 3 Variation portioning into phoD-harbouring bacterial
community at the genus level explained by soil properties

Environmental factorsa % of all variationb pc

ALP 19.7 0.008**

C/P 16.5 0.044*

N/P 6.6 0.272

pH 6.3 0.306

C/N 5.3 0.412

SOM 4.8 0.468

AP 4.6 0.500

Total 63.8

a SOM soil organic matter, AP available phosphorus, ALP alkaline phos-
phatase, C/P the ratio of soil organic carbon to total phosphorus, N/P the
ratio of total nitrogen to total phosphorus, C/N the ratio of soil organic
carbon to total nitrogen
b Environmental factors’ effect was assessed through variance
partitioning based on the conditional effect (λ-A) of each environmental
variable. Forward selection on 499 permutations was used to test the
significant contributions of each factor
c* indicates significant difference at p < 0.05; ** indicates significant
difference at p < 0.01
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bacterium that exhibits resistance to adverse environments,
and it was more abundant in the desert steppe soils where
harsh geographic and climatic conditions are expected.
Bradyrhizobium also encodes a N2-fixing gene (Kaneko
et al. 2002), which is closely related to soil N nutrient levels;
thus, it exhibited high relative abundance in the typical and
meadow steppe soils.

There was a significant difference in phoD-harbouring bac-
terial α-diversity among the three steppes (Fig. 2a). The
Chao1 index was the highest in the typical steppe, suggesting
that the typical steppe soils had a higher quantity of species

carrying the phoD gene; this result is closely related to the
high vegetative diversity and good hydrothermal conditions
in the typical steppe (Steenwerth et al. 2002). The β-diversity
of the phoD-harbouring bacterial community also diverged
among the three steppe types (Fig. 2b), and the analysis re-
vealed that the richness of the phoD-harbouring bacterial com-
munity was preserved with the change in steppe type. The
zonal distribution of the climate in the Inner Mongolia steppe
results in the variations in steppe type, including desert steppe,
typical steppe and meadow steppe, and is mainly reflected in
variations in soil properties (Wang et al. 2016). Changes in

Fig. 4 The effect of
environmental factors on the
distribution of phoD-harbouring
bacterial community structure (a)
and the relationships between
environmental factors and phoD-
harbouring bacteria at the genus
level (b). Black lines in RDA plot
represent the environmental
variables, and colour dots
represent soil samples from
different steppes (n = 5). SOM,
soil organic matter; AP, available
phosphorus; ALP, alkaline
phosphatase
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soil properties directly affect the structure of the soil bacterial
community (Cui et al. 2019) and lead to significant changes in
the Po-mineralizing bacterial community.

4.2 Environmental Drivers of the phoD-Harbouring
Bacterial Community

The RDA results showed that the phoD-harbouring bacterial
community structure was strongly correlated with the soil C/N
ratio, N/P ratio, AP and SOM (Table S2). The results, which
suggest shifts in the soil C:N:P stoichiometry, shed light on
the potential for nutrient availability to influence the diversity
and composition of the phoD-harbouring bacterial community
(Zhou et al. 2017; Aanderud et al. 2018). This results also
support those of other studies showing that the nutrient re-
quirements of different microbial biomass were differ
(Cleveland and Liptzin 2007; Hartman and Richardson
2013). With the change from desert steppe to typical steppe
to meadow steppe, the soil AP content increased significantly
(Table 2), but only a few rare phoD-harbouring bacteria were
sensitive to the change in AP. As AP increased, the relative
abundances of Amycolatopsis and Bacillus decreased signifi-
cantly, while the relative abundances of Bradyrhizobium,
Pseudomonas and Methylobacterium increased significantly,
indicating that not all phoD-harbouring bacteria were induced
in a P-repressible manner. Other phoD-harbouring bacteria
may be correlated with C and N contents or characterized by
different nutrient preferences (Shade et al. 2014; Jousset et al.
2017; Samad et al. 2017). In general, r-strategists (e.g.
Xanthomonas) grow faster in response to available C and re-
quire larger amounts of P compared to oligotrophs (Elser et al.
2003; Fierer et al. 2007; Luo et al. 2019). Thus, P mineraliza-
tion is inherently coupled, to a degree, with C mineralization.
The microbial community tends towards optimal states, which
benefits nutrient cycling. More importantly, as an indicator of

the composition of the phoD-harbouring bacterial community,
functional diversity may be more related than taxonomic di-
versity to ecosystem functions (Lagos et al. 2016).

In other studies, pH was also the main soil property
influencing the phoD-harbouring bacterial community
(Lauber et al. 2009; Wang et al. 2012; Ragot et al. 2015).
However, similar results were not obtained in this study,
which was mainly due to the narrow pH range of the three
steppe types (6.88–7.19). Additionally, temporal and spatial
variations often lead to differences in bacterial communities
and soil properties, so the abundances of different phoD-
harbouring bacteria may be driven by different soil properties.
Nevertheless, pH was an important factor influencing the rel-
ative abundances of phoD-harbouring Rhodopirellula and
Frankia (Fig. 4b).

4.3 The Relationships of phoD-Harbouring Bacterial
Community Composition to Soil P Fractions

Our results showed that ALP activity was positively correlated
with AP content (Fig. S2) and NaOH-Po (Table 4). This indi-
cates that the NaOH-Po pool can be an important source of AP
through mineralization (Yang et al. 2015), which is consistent
with the findings that microorganisms promote the availability
of P by mineralizing Po (Kanchikerimath and Singh 2001;
Fraser et al. 2015; Chen et al. 2019b). Although there was a
significant positive correlation between the α-diversity
(Chao1 index) of the phoD-harbouring bacterial community
and ALP activity (Fig. 3), only a portion of bacteria had a
significant correlation with ALP (Fig. 4b). This result suggests
that not all bacteria carrying the phoD gene play an important
role in secretion of ALP and that this portion of bacteria may
be highly activated during the secretion of ALP (Chen et al.
2019a). This phenomenon may also indirectly reflect that the
production of ALP in soil is not controlled by the diversity of

Table 4 The relationships among
alkaline phosphatase, phoD-
harbouring bacteria at the genus
level and soil P fractions

Labile-P HCl-P NaOH-P

Po Pi Po Pi Po Pi

ALP 0.19 0.33 −0.28 −0.03 0.89** 0.38

phoD-Harbouring
bacteria

Amycolatopsis −0.50 0.02 −0.04 0.70** 0.18 0.41

Bacillus 0.65** −0.31 0.26 0.33 −0.57* 0.03

Bradyrhizobium 0.57* 0.31 −0.56* −0.32 0.15 −0.34
Dietzia −0 .36 0.26 −0.14 0.31 0.56* 0.60*

Frankia 0.93** −0.16 −0.25 0.05 0.13 −0.72**

Methylobacterium 0.55* 0.19 −0.34 −0.61* 0.24 −0.07
Sphingomonas −0.10 −0.08 0.02 0.18 0.64* −0.33

aALP alkaline phosphatase; Labile-P =H2O-P +NaHCO3-P; H2O-P, NaHCO3-P, HCl-P and NaOH-P represent
phosphorus extracted by deionized water, 0.5 M NaHCO3, 1 M HCl and 0.5 M NaOH, respectively; Po organic
phosphorus, Pi inorganic phosphorus
b The values in the table were Spearman correlation coefficients (n = 15). * p < 0.05; ** p < 0.01
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the phoD gene under low-P conditions. Therefore, although
the bacteria carrying the phoD gene were diverse with respect
to classification, ALP synthesis-related expression of the
phoD gene was highly induced in only a few instances. The
bacteria that efficiently produce ALP may be preferentially
selected for, especially when the total bacterial diversity in
soil is limited (Fraser et al. 2015).

The relative abundance of Dietzia was closely correlated
with ALP and had a significantly positive correlation with
NaOH-Pi (Fig. 4b), indicating that the Pi produced by Dietzia
mineralization exists in the form of NaOH-Pi. However, the
relative abundances of Bacillus and Bradyrhizobium had a neg-
ative correlation with NaOH-Po and HCl-Po, and both were
positively correlated with labile-Po. These results suggest that
these two bacteria promoted the conversion of the non-labile Po
pool into the labile Po pool. In addition, the relative abundances
of Frankia and Methylobacterium were both positively corre-
lated with labile-Po and negatively correlated with non-labile Pi
(p < 0.05), which may be attributed to microbial immobiliza-
tion. Our results suggest that phoD-harbouring bacteria may
employ flexible P use strategies (Godwin and Contner 2015).

It is also important to note that other phosphatases (i.e.
phytases, phosphodiesterases) not measured in this study
may be responsible for hydrolysing P compounds in the
NaHCO3-P fraction. In addition, although the phoD gene is
considered to be the most abundant phosphatase gene in soil
(Tan et al. 2013; Luo et al. 2017), it can provide only partial
information about the microbial mineralization of Po. Other Po
mineralization genes, such as phoA, phoX, BPP and appA,
may provide more information about this process; these genes
were not analysed here due to the lack of genetic tools.
Moreover, the actual expression levels of soil enzymes can
be explained only by integrating genomics and proteomics.
Further studies are necessary to quantify the gene tran-
scriptome to fully understand the response of ALP activity
caused by phoD-harbouring bacteria to environmental factors.

5 Conclusions

The bacterial phoD gene was found to be distributed mainly
across 5 phyla, 6 classes, 10 orders, 16 families and 17 genera
in Inner Mongolia steppe soils. Although the phoD-
harbouring bacterial community structure varied by steppe
type, there was a core phoD-harbouring bacterial microbiome.
The soil stoichiometric ratios of carbon, nitrogen and phos-
phorus were the most influential factors shaping the phoD-
harbouring bacterial community structure. However, not all
bacteria carrying the phoD gene play an important role in
the secretion of alkaline phosphatase or are induced in a P-
repressible manner. In summary, the response of phoD-
harbouring bacteria to soil P status is asynchronous and can
be highly activated by their nutrient preferences and

environmental conditions. Future research should address
the gene transcriptome to fully understand the microbe-
related processes of organic P turnover.
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