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ABSTRACT
The urbanization worldwide leads to the rapid increase of solid
waste, posing a threat to environment and people’s wellbeing.
However, it is challenging to detect solid waste sites with high
accuracy due to complex landscape, and very few studies consid-
ered solid waste mapping across multi-cities and in large areas.
To tackle this issue, this study proposes a novel deep learning
model for solid waste mapping from very high resolution remote
sensing imagery. By integrating a multi-scale dilated convolutional
neural network (CNN) and a Swin-Transformer, both local and glo-
bal features are aggregated. Experiments in China, India and
Mexico indicate that the proposed model achieves high perform-
ance with an average accuracy of 90.62%. The novelty lies in the
fusion of CNN and Transformer for solid waste mapping in multi-
cities without the need for pixel-wise labelled data. Future work
would consider more sophisticated methods such as semantic
segmentation for fine-grained solid waste classification.
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1. Introduction

1.1. Background

With the rapid process of urban sprawl and the accompanied population growth world-
wide, the amount of solid waste has been increasing at an unprecedented speed.
According to the World Bank Group (Kaza et al. 2018), the total amount of solid waste
on Earth has reached 2.01 billion tons, which could impose a great threat to both eco-
logical environment and people’s wellbeing. According to the United Nations (https://
sdgs.un.org/goals), the Sustainable Development Goal (SDG) 6 focuses on clean water and
sanitation while SDG 11 is about sustainable cities and communities, which all concern
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on the improving water quality and urban environment by reducing pollution, eliminating
dumping and paying special attention to municipal and other waste management. Under
this circumstance, the detection of solid waste could provide valuable spatial data to
accomplish the above SDGs. It should be noted that without appropriate human interven-
tion, the situation might be even worse in those developing countries since their cities’
administration systems could be imperfect and defective, leading to the widespread exist-
ence of solid waste sites (Lin et al. 2022).

These solid waste sites mainly include household waste around residential areas, indus-
trial waste from factories and construction waste generated by both building construction
and demolition. These solid waste sites could produce hazardous materials that cause soil
contamination, which is a contributor to point-source pollution (Capolupo et al. 2015).
Moreover, the accompanied harmful substances would also be transferred to the nearby
water bodies (i.e. rivers, lakes, reservoirs) during the precipitation process, leading to the
non-point source pollution, which will degrade the quality of cultivated land and endan-
ger the safety of drinking water sources. Therefore, it is of great significance to monitor
and delineate the spatial distribution of the solid waste sites, which could provide geo-ref-
erenced data for environmental protection department.

1.2. Related work

Earlier studies for solid waste monitoring mainly focused on field surveys and statistical
reports (Beli€en et al. 2014), which could be a tough and laborious task. Meanwhile, with
the rapid development of aerospace science and technology, remote sensing imagery could
be easily accessible nowadays. Due to the unique advantage of synoptic view, wide cover-
age and cost-effectiveness (Feng et al. 2015), remote sensing has been introduced to moni-
tor solid waste dumps and landfills, and the monitoring method has been transferred
from visual inspection to automatic detection and recognition. In the previous studies,
Silvestri and Omri (2008) endeavoured to detect landfills by monitoring the growth status
of nearby vegetation with medium-resolution remote sensing imagery. The rationale is
that vegetation could show an irregular spectrum due to the soil pollution caused by land-
fills or garbage dumps. However, this indirect approach may fail since the vegetation
growth could be affected by numerous additional factors other than solid waste induced
contamination. Compared with medium resolution remotely sensed data, very high reso-
lution (VHR) imagery has a spatial resolution at the meter level, where the appearance,
outline and textures of solid waste could be clearly captured (Figure 1), making it possible
for the direct detection from remote sensing imagery. For instance, Kako et al. (2012) uti-
lized VHR remote sensing data acquired by unmanned aerial vehicle (UAV) to detect
plastic waste in the coastal regions, which justifies the effectiveness of VHR imagery in
enhancing the geospatial accuracy for waste monitoring.

Although several researches have focused on the automatic detection of solid waste
sites (Andriolo et al. 2020; Biermann et al. 2020), they mainly relied on classic machine
learning methods and handcrafted image features, whose generalization capability and
robustness could be not strong enough to cope with the complicated and heterogeneous
landscapes. Besides, the design of image features would require special domain expertise
from the remote sensing field. Compared with the above methods, deep learning or deep
neural networks (DNN) (LeCun et al. 2015), especially the convolutional neural network
(CNN), has witnessed astonishing success in computer vision tasks (Krizhevsky et al.
2012), and has also been a research hotspot in remote sensing (Feng et al. 2019) and
environmental field (Liu et al. 2020). Relevant applications include land use and land
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cover classification (Huang et al. 2018), wetland mapping (Rezaee et al. 2018) and plastic
greenhouses monitoring (Feng et al. 2021). Meanwhile, CNN has also been applied to gar-
bage detection (Sun et al. 2021) and achieved good performance. For instance, Lin et al.
(2022) proposed the RWNet to classify different types of recyclable waste from ground
pictures with transfer learning. Fallati et al. (2019) utilized a commercial software,
PlasticFinder, whose core algorithm is CNN to detect the coastal solid waste sites from
UAV images. However, convolution calculation of CNN belongs to local operator, which
can only extract image features from a certain sized image patch (called receptive field),
neglecting the global information and contextual relationship, while the latter is of great
importance in remote sensing image analysis and scene understanding.

Recently, a model from the field of natural language processing (NLP), Transformer,
has been applied successfully in computer vision tasks with astonishing performance
(Dosovitskiy et al. 2020). Specifically, Transformer is mainly based on the self-attention
mechanism, where the contextual relationship within a scene image could be effectively
modeled. Therefore, Transformer based models have yielded state-of-the-art performance
in several computer vision applications such as image classification, object detection, etc.
(Dosovitskiy et al. 2020). Considering the complicated nature of modern urban landscape,
it would be difficult to detect the solid waste sites from its surroundings. Under this con-
text, Transformer could play a role in increasing the accuracy of solid waste recognition
due to its capability of capturing the spatial relationship among various land objects.
Despite its advantage in aggregating global contextual information of a certain scene
image, Transformer tends to neglect the local features, which is precisely the strength of
classical CNNs. Therefore, if we integrate both Transformer and CNN, they would com-
plement each other and might yield an even better performance for solid waste detection.

Figure 1. Study areas.
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1.3. Motivation and contributions

Above all, the objective of this paper is to integrate both Transformer and CNN into a
dual-stream deep neural network for the accurate detection of solid waste sites from VHR
remote sensing imagery. In specific, the hybrid model consists of two streams, one is the
CNN stream and the other is the Transformer stream. In the CNN stream, we adopt the
multi-scale dilated convolutional neural network (MDCNN) for local features extraction,
which could account for the scale and shape differences of solid waste sites under com-
plex landscapes. In the Transformer stream, we utilize the latest Swin-Transformer (Liu
et al. 2021) to extract and aggregate the global contextual features, which could increase
the separability of solid waste sites from their surroundings. Afterwards, both local and
global features are fused via a gated fusion module for feature aggregation, based on
which the final classification could be made. Finally, to get the exact boundary of each
solid waste site, we tend to a weakly-supervised method which is based on CAM (class
activation mapping). Ever since the proposed deep neural network aims to detect solid
waste sites, then it is named SW-Net (Solid Waste Net) in this paper.

The main contributions of this study are as follows.

1. A novel deep learning model (i.e. SW-Net), which integrates CNN and Transformer
for local and global feature learning, has been proposed for solid waste mapping.

2. A weakly-supervised mechanism has been explored in the delineation of solid waste
boundaries, which shows good performance without pixel-wise labelled data.

3. The dataset (i.e. RS4SW) and the code in this paper are available online to promote
future studies.

The rest of the paper is organized as follows. Section 2 introduces the study area, data-
set and the proposed SW-Net. Section 3 shows the experiment results. Section 4 presents
the discussion and limitation. And Section 5 provides the main conclusions.

2. Methods

This section gives an overview of the study area and dataset first, then illustrates the pro-
posed deep learning model for solid waste mapping. Finally, training details and accuracy
metrics for performance evaluation are given.

2.1. Study area

In this research, three typical study regions are selected, including Langfang in China,
Faridabad in India and Tezoyuca in Mexico, which all locate in the main developing
countries around the world (Figure 1). All the three cities are close to their capitals (i.e.
Beijing, New Delhi and Mexico City), which are also known as satellite cities.

Due to their location advantages, all the three cities have witnessed rapid industrial
development, which are mainly attributed to the industrial transfer of their capital cities.
Several low-end manufacturing and construction industries have been moved to these cit-
ies, such as cement plants and chemical plants, which leads to the rapid increase of the
accompanied solid waste sites. It indicates that they might have become the Pollution
Heaven, ever since the environmental regulation of these three cities are far less severe
than that of their capital cities, causing the casually discarding and stacking of these
industrial wastes.
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Meanwhile, the rapid urbanization process of the three cities could bring in more
household waste. However, supporting infrastructure construction has lagged behind the
garbage increase, leading to the stack of household wastes around the residential regions,
especially in the suburb of the city. Moreover, during the urban sprawl, a large number of
old buildings have been torn down, which contributes to the widespread construction
waste. In this study, we try to detect the solid waste sites in the three typical cities of
China, India and Mexico to provide accurate solid waste maps to the local government
for regional sustainability.

2.2. Dataset used

The VHR remote sensing imagery in this study is from Google Earth (http://earth.google.
com/), with a spatial resolution of 0.5 meters, where the details of solid waste sites could
manifest themselves clearly (Figure 2). Meanwhile, the size of each image patch is set to
be 224� 224, since it is a standard image size in the deep learning field (Feng et al.
2021).

The classification scheme mainly consists of two categories, including solid waste sites
(SW) and non-solid waste sites (non-SW) (Table. 1). Specifically, SW mainly includes
industrial waste, household waste and construction waste, which are usually distributed
around factories and residential areas. Besides, SW usually has a white appearance with
irregular shapes and textures (Figure 2), which makes it possible to separate them from
their surroundings. Meanwhile, non-SW mainly consist of buildings, roads, parks, farm-
land and water bodies, etc.

Table 1 shows that there are a total of 3680 image patches for Langfang, Faridabad
and Tezoyuca, where the ratio of training and testing sets is 8:2. Training set is used to
train and calibrate the classification model while testing set is left for accuracy assessment.

2.3. Overall structure of SW-Net

This section will describe the overall structure of the proposed SW-Net for solid waste
mapping.

As shown in Figure 3, the input of the SW-Net is a remote sensing image patch while
the output is the predicted label. In specific, the proposed SW-Net consists of a CNN
stream, a Transformer stream and a feature fusion module. The CNN stream contains a
MDCNN while the Transformer stream contains the state-of-the-art Swin-Transformer.
The former was focused on local feature extraction, while the latter was focused on global
contextual feature learning. Next, an adaptive gated feature fusion model was adopted to
aggregate both the local and global features. Once the training process is finished, the
trained SW-Net could be used to recognize the solid waste sites in large-scale regions
through sliding-window strategy.

Figure 2. Samples of solid waste sites. (a) Langfang city in China; (b) Faridabad city in India; (c) Tezoyuca city in
Mexico.
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2.4. Feature extraction

In this section, we will detailly describe the two streams of the proposed SW-Net, which
includes the CNN stream and the Transformer stream.

2.4.1. CNN stream
The CNN stream is formed by a MDCNN, which has been proposed in our earlier works
(Feng et al. 2019; Chen et al. 2022), and has achieved good performance in coastal land
cover mapping and urban village extraction. As is known, the landscape under VHR
remote sensing imagery is rather complicated and fragmented. Meanwhile, the solid waste
sites have different shapes and sizes. Therefore, it is a challenging task to automatically
detect these solid waste sites. To tackle the complex landscapes and the appearance vari-
ance of solid waste sites, dilated convolutions were introduced to make the CNN model
accommodate to the variety of ground objects’ shapes. Besides, multi-scale connections
among convolutions have been established for extracting hierarchical and multi-level
features.

As depicted in Figure 4, both the dilated convolution and multi-scale connections were
utilized for discriminative feature learning under complex landscapes. However, as convo-
lutions belong to local operator, which has flaws in modeling the contextual information
of the entire scene image, while the contextual relationships play a vital role in remote
sensing image analysis and scene understanding. To complement this deficiency, we intro-
duced an additional parallel stream based on Transformer to enhance the capability of
global feature learning, which will be described in the next section.

2.4.2. Transformer stream
Specifically, the Transformer stream is based on Swin-Transformer. It first splits an image
into N�N patches, and then establishes the relationship among these patches to derive the

Table 1. Classification scheme.

Study area Image size Category Training Testing Total

Langfang, China 34048� 34720 SW 552 138 690
non-SW 552 138 690

Faridabad, India 16095� 16582 SW 520 130 650
non-SW 520 130 650

Tezoyuca, Mexico 14905� 14700 SW 400 100 500
non-SW 400 100 500
Total 2944 736 3680

Note. SW stands for solid waste sites and non-SW represents non-solid waste sites.

Figure 3. Overall structure of the proposed SW-Net.
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contextual information, aiming at providing global features that could compensate the
drawback of the CNN stream.

Figure 5 shows the structure of the Transformer stream. As can be seen, a remote
sensing scene image was first split into 4� 4 patches via Patch Partition. Afterwards, an
image sequence is generated by stacking the image patches serially via Linear Embedding
layer, and then is sent to the Swin-Transformer Block. Among them, Patch Merging
down-sampled the feature map to reduce the feature map’s size while increasing its
dimension to reduce the computation without losing too much feature information. Swin-
Transformer block consists of both the W-MSA (Windows Multi-Head Self-Attention)
and SW-MSA (Shifted Windows Multi-Head Self-Attention) modules (Figure 5), which is
to model the dependency among different image patches globally. From the other hand,
such dependency just reflects the contextual relationships within the remote sensing scene
image, which could redeem the shortcomings of the CNN stream in global feature
learning.

Figure 4. CNN stream.

Figure 5. Transformer stream.

GEOCARTO INTERNATIONAL 7



2.5. Adaptive feature fusion

After the image feature extraction from both CNN stream and Transformer stream, fea-
ture fusion should be conducted to enhance the features’ representation and discrimin-
ation. In this section, we introduce an adaptive gated fusion module method, which has
the merits of enhancing informative features while suppress the noisy ones.

Figure 6 depict the structure of the adaptive fusion module. Features from each stream
(i.e. MDCNN or Swin-Transformer) were firstly passed to Flatten layers. Next, several
convolution layers were used to compute the feature importance, after which the original
features were recalibrated via dot-production. Finally, the recalibrated features were then
concatenated to generate the fused feature, which would be sent into the softmax layer for
classification.

2.6. Solid waste sites boundary delineation

It should be noted the proposed SW-Net is a patch-wise classification model, which could
not extract the exact boundary of each solid waste site. To tackle this issue, we refer to a
weakly-supervised method that utilizes the Grad-CAM (Gradient-weighted Class Activation
Mapping) (Selvaraju et al. 2017) to delineate the solid waste sites’ boundaries. Specifically,
based on Grad-CAM, the model trained with image-level or scene-level labels are informative
to tell where the most discriminative region lies. Therefore, Grad-CAM is utilized to generate
attention maps to tell where the solid waste sites locate. To better delineate the boundaries of
the solid waste sites, a threshold was utilized to segment the attention map, after which the
solid waste sites could be localized (Figure 7). It should be noted that Grad-CAM does not
need pixel-level labels, which could reduce the labelling burden but still yield the boundary.

Figure 6. Gated fusion module.

Figure 7. Boundary delineation of solid waste sites. (a) remote sensing image patch; (b) image patch overlayed with
CAM; and (c) boundaries of solid waste sites generated by thresholding the CAM image.
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2.7. Training details

In this study, the widely used Adam (Kingma and Ba 2014) was selected as the optimizer
with an initial learning rate of 1e-4. As for the loss function, cross-entropy (CE) loss was
adopted. The ratio of training and testing sets is 8:2 and 20% of training samples were
randomly chosen to form the validation set, which could help selecting the best model
with the minimum validation loss. Besides, the SW-Net is programmed with TensorFlow
2.5 on a NVIDIA 2080Ti with 11G memory.

2.8. Accuracy evaluation

Both qualitative and quantitative methods were used to justify the performance of the
proposed SW-Net in solid waste mapping. As for the former, visual inspection was
adopted to check the classification errors. While for the latter, a testing dataset was used
to calculate the confusion matrix and overall accuracy (OA). In addition, ablation studies
were performed to further justify the role of CNN stream and Transformer stream. And
contrast experiments were also conducted to compare the proposed SW-Net with other
deep learning models.

3. Results

This section shows the results of both solid waste classification and accuracy evaluation.
In addition, bad case analysis is performed to show the errors of the model.

3.1. Solid waste mapping results

Figure 8 shows the solid waste mapping results in the three study areas using the pro-
posed SW-Net. It illustrates that the proposed SW-Net shows a good performance in rec-
ognizing the solid waste sites under complex landscapes in the three study regions. The
mapping results are in accordance with the visual inspection from remote sensing
imagery. The maps witness no obvious classification errors. Meanwhile, we also selected a
series of sub-regions from the three cities to show the mapping details. In depicts clearly
that through the SW-Net and the Grad-CAM, the boundaries of each solid waste site
could be delineated from its surroundings. Although the boundaries in this study is not
as precise as the ground-truth, it should be noted that we only utilized the coarse, scene-
level labels, which yields a trade-off between huge labeling work and the localization
accuracy.

3.2. Accuracy assessment results

In the last section, visual inspection was used to evaluate the solid waste mapping per-
formance qualitatively. While in this section, a testing dataset was introduced for quanti-
tative accuracy assessment. A confusion matrix was derived for each city together with
the OA and Kappa index, which is shown as follows.

Figure 9 indicates that the proposed SW-Net has a good performance in the task of
solid waste mapping, which shows an overall accuracy of 94.20%, 94.62% and 80.50%
for Langfang, Faridabad and Tezoyuca, respectively. Besides, Langfang and Faridabad
show a higher accuracy when compared with Tezoyuca. One possible reason is that
the solid wastes sites observed from remote sensing image of Tezoyuca show rather
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unclear textures when compared with Langfang and Faridabad, making it more diffi-
cult to separate from the background. To further analyse the classification
performance.

Figure 8. Mapping result of solid waste sites for (a) Langfang; (b) Faridabad; (c) Tezoyuca.
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Figure 10 illustrates several prediction errors, together with the corresponding attention
maps that are generated from the proposed deep learning model. Figure 10a shows that
when the solid waste sites have a small size or unobvious textures, it is difficult to tell
whether the image patch contains a solid waste site or not, even interpreted by remote
sensing experts. Moreover, attention maps show that SW-Net could not correctly locate
the solid waste sites hence results in the classification errors. Figure 10b illustrates several
false positive predictions, where other land covers are misclassified as solid waste sites. It
seems that the model tends to recognizes the opening parking lot and courtyard as solid
waste sites, where they show similar textures and spatial patterns as that of solid waste
sites from the remote sensing imagery. To tackle the above classification errors, remote

Figure 9. Confusion matrix of each study area. Notes. 0 represents non-solid waste sites and 1 denotes solid waste
sites.

Figure 10. Examples of several predicted image patches. (a) solid waste sites predicted as non-solid waste sites; (b)
non-solid waste sites predicted as solid waste sites.
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sensing images with a higher spatial resolution would be needed in the future study, since
these images could provide finer spatial details to separate solid waste sites from other
land cover categories and vice versa.

4. Discussion

This section firstly analyses the exposure risk of solid waste for each study area, then
describes the ablation study and the comparison with other methods. At last, limitation
and future work of this study are discussed.

4.1. Exposure risk analysis of solid waste

Based on the solid waste classification result, we could yield the accompanied exposure
risk map to identify the regions with a high exposure risk to solid waste sites (Figure 11).

Specifically, we utilized kernel density estimation method to the solid waste classifica-
tion data to generate the exposure risk map. The regions with the lowest risk are in white,
and the deeper the color, the higher the exposure risk it represents. Figure 11a depicts the

Figure 11. Exposure risk map for (a) Langfang; (b) Faridabad; (c) Tezoyuca.
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exposure risk map of Langfang in China, which shows a clear spatial pattern that most
high-risk regions are outside the city core. However, they are very close to the rivers,
which would pose a potential risk to the water quality. In Faridabad, many ponds are
located in the high exposure risk zones (Figure 11b), which would also result in a concern
of possible water safety. Figure 11c shows that the high exposure risk districts are scat-
tered in Tezoyuca while there are also several high-risk zones alongside the river.
Therefore, both the spatial location map and the exposure risk map could provide valu-
able information to the local environmental protection department.

4.2. Ablation study

According to previous study (Lin et al. 2021), to further justify the performance of the
proposed SW-Net, we compared the accuracy between mono-stream DNN and dual-
stream DNN.

Since the SW-Net in this study integrates both a CNN stream and a Transformer
stream, it is necessary to verify the effectiveness of each mono-stream for the performance
of solid waste mapping. Specifically, we consider the following models. CNN-only and
Transformer-only represent using only CNN stream or Transformer stream for classifica-
tion. Feature-stacking means the classic feature-stacking method, while the proposed
model represents the SW-Net in this study. The comparison results between the above
models are listed in Table 2. The comparison results between the above models are listed
in Table 2.

Table 2 indicates that when compared with mono-stream model, the integration of
CNN and Transformer in this study could increase the accuracy for solid waste classifica-
tion, which could gain an average accuracy increase of 8.33%, 7.31% and 8.25% in
Langfang, Faridabad and Tezoyuca, respectively. The reason for the accuracy increase lies
in the integration and complementation of both local features from CNN and global fea-
tures from Transformer. Meanwhile, the gated feature fusion in this study outperforms
the feature-stacking method with an average accuracy increase of 5.98% in the three cities.
The reason why the feature-stacking fusion method shows a lower performance lies in
that it only concatenates the local and global features extracted from CNN stream and
Transformer stream, neglecting the importance of each feature to the classification accur-
acy. On the contrary, the gated feature fusion could learn the weights of each feature,
aiming at re-calibrating all the features according to their importance hence to enhance
the informative features while restrain the noisy ones.

4.3. Comparison with other methods

To further verify the effectiveness of this study, we also compared it with other classic
deep learning methods in the computer vision field, such as VGG (Simonyan and
Zisserman 2014), ResNet (He et al. 2016), DenseNet (Huang et al. 2017), EfficientNet
(Tan and Le 2019), DenseNet (Huang et al. 2017). The comparison results are as follows.

Table 2. Accuracy for CNN-only, Transformer-only and the proposed model.

Method\Study area OA (%) (A) OA (%) (B) OA (%) (C) Average (%)

CNN-only 86.96 88.85 73.00 83.83
Transformer-only 84.78 85.77 71.50 81.52
Feature-stacking 88.77 88.08 74.50 84.64
Proposed 94.20 94.62 80.50 90.62

Note. A, B and C stand for Langfang, Faridabad and Tezoyuca, respectively.
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Table 3 shows that the SW-Net outperforms other deep learning models with an aver-
age accuracy increase of 12.10%, 11.31% and 11.10% in Langfang, Faridabad and
Tezoyuca, respectively. Compared with the classic CNN models, the proposed SW-Net
model has two improvements. Firstly, it integrates both MDCNN and Swin-Transformer
into an end-to-end model, which benefits from both the multi-scale local features of
MDCNN and the global contextual features of Swin-Transformer. Secondly, the SW-Net
benefits from the adaptive local and global feature fusion, which could enhance the infor-
mation of each subnetwork while suppressing the noise within to a certain limit.
Therefore, the SW-Net model could learn more discriminative features from complicated
landscapes.

Meanwhile, a comparison with other solid waste classification methods was made to
further demonstrate the superiority and limitations of the proposed SW-Net. The follow-
ing table shows the comparative analysis results, mainly from the aspects of data source,
study area, model used and accuracy reported from literature (Table 4).

Silvestri and Omri (2008) utilized an indirect method to recognize solid waste sites by
analysing the abnormal NDVI (normalized difference vegetation index) that was caused
by landfills. This method might be unreliable in large regions since the NDVI could be
affected by various factors other than solid waste. Lin et al. (2022) classified the wastes
from the ground images using a VGG-like deep learning model with a transfer learning
strategy. Both Bao et al. (2018) and Fallati et al. (2019) utilized UAV Images to identify
solid waste sites using the threshold method and CNN model, respectively, and show
good performance. It should be noted UAV has a limitation in acquiring data from large-
scale regions, which might not be the best choice in real world applications. Compared
with UAV data, VHR satellite data could provide an alternative in solid waste mapping.
For instance, Sun et al. (2021) performed solid waste classification using VHR imagery
and an object detection model. Although their model could yield the bounding box of the
solid waste sites, it requires a large amount of manually labelled data. Besides, solid waste
sites are always scattered distributed with an irregular boundary, making it hard to recog-
nized even through an object detection model. Compared with the above studies, unlike
the classic CNN model, the proposed SW-Net integrated CNN and Transformer to fuse
both local and global features for enhancing the inter-class separability. Meanwhile, the
SW-Net could yield the boundaries of the solid waste sites through a weakly supervised
method, which releases the burden on per-pixel labelling process. Above all, the proposed

Table 3. Comparison with other deep learning models.

Method\Study area OA (%) (A) OA (%) (B) OA (%) (C) Average (%)

VGG-16 82.25 85.77 70.00 80.16
ResNet-50 82.61 88.46 72.50 81.93
EfficientNet-B0 81.52 77.31 60.50 74.32
DenseNet-121 89.49 88.85 76.00 85.59
Proposed 94.20 94.62 80.50 90.62

Note. A, B and C stand for Langfang, Faridabad and Tezoyuca, respectively.

Table 4. Comparison with other solid waste classification methods.

Approach Data Muti-Region Model Accuracy

This work VHR image Yes CNN-Transformer 90.62%
Silvestri and Omri (2008) VHR image No NDVI based –
Lin et al. (2022) Ground image No VGG-like 76.8%
Bao et al. (2018) UAV image No Thresholding 98.6%
Fallati et al. (2019) UAV image Yes CNN 94%
Sun et al. (2021) VHR image Yes SRAF-Net 83.17%
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model is promising for large scale solid waste mapping with little requirement for box-
level or pixel-level annotation.

4.4. Limitations

In addition, although the SW-Net model shows a good performance in solid waste map-
ping from VHR remote sensing images, some issues need to be solved. The first issue is
that although we could obtain the coarse boundaries of solid waste sites through a
weakly-supervised method (Figure 7), the boundaries could be further refined through
fully-supervised semantic segmentation model in future research. The other issue is that
we did not perform a fine-grained classification of solid waste sites since it is hard to sep-
arate industrial, household and construction waste due to very similar appearances from
remote sensing imagery. In the future study, other geo-referenced data such as point-of-
interest (POI) could be introduced to provide additional attribute information. For
instance, if most surrounding POIs of a certain solid waste site belong to industrial zones,
then it is highly probable that this site contains industrial waste.

5. Conclusions

This research focused on the automatic mapping of solid waste sites based on the pro-
posed dual-stream deep neural network, SW-Net, from VHR remote sensing data.
Specifically, the SW-Net consists of a CNN stream and a Transformer stream. The former
utilizes an MDCNN to learn multi-scale local features, aiming to tackle the scale and
shape variations of solid waste sites. While the latter adopts Swin-Transformer to learn
contextual information of a remote sensing image to provide useful global features. Both
the local and global features are fused adaptively, where the more informative features
could be enhanced via feature aggregation.

Experimental results show that the proposed model achieves high accuracy for solid
waste mapping in three typical regions of China, India and Mexico. The prediction errors
mainly occurred between solid waste sites and other land covers such as open parking
lots and courtyards. An exposure risk map has also been generated to show the location
of the high-risk regions.

This study demonstrates that by utilizing the proposed SW-Net, it is feasible to detect
and map solid waste sites from VHR remote sensing imagery. Furthermore, in terms of
Environmental, Social, and Governance (ESG), firstly, the generated solid waste map
could provide valuable geospatial data for environmental protection, indicating the risk of
solid waste sites on water safety, soil contamination, etc. As for social aspect, the solid
waste map provides a way to measure the spatial inequality of people’s well-being against
potential health risks. As for governance, the findings in this study could be used for both
local governments and companies for the constrain of solid waste pollution, leading to a
more sustainable way in regional development.
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