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Crop traits such as aboveground biomass (AGB), total leaf area (TLA), leaf chlorophyll content (LCC), and thousand kernel weight
(TWK) are important indices in maize breeding. How to extract multiple crop traits at the same time is helpful to improve the
efficiency of breeding. Compared with digital and multispectral images, the advantages of high spatial and spectral resolution of
hyperspectral images derived from unmanned aerial vehicle (UAV) are expected to accurately estimate the similar traits among
breeding materials. This study is aimed at exploring the feasibility of estimating AGB, TLA, SPAD value, and TWK using UAV
hyperspectral images and at determining the optimal models for facilitating the process of selecting advanced varieties. The
successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS) were used to screen sensitive
bands for the maize traits. Partial least squares (PLS) and random forest (RF) algorithms were used to estimate the maize traits.
The results can be summarized as follows: The sensitive bands for various traits were mainly concentrated in the near-red and
red-edge regions. The sensitive bands screened by CARS were more abundant than those screened by SPA. For AGB, TLA, and
SPAD value, the optimal combination was the CARS-PLS method. Regarding the TWK, the optimal combination was the
CARS-RF method. Compared with the model built by RF, the model built by PLS was more stable. This study provides guiding
significance and practical value for main trait estimation of maize inbred lines by UAV hyperspectral images at the plot level.

1. Introduction

Maize has the largest yield and the widest planting area
among any other crops in the world [1–3]. Total leaf area
(TLA, defined as the sum of all leaf area of a single plant)
and leaf chlorophyll content (LCC) are closely related to crop
photosynthesis and transpiration [4–6]. Many researches
showed that SPAD value could well represent the relative
value of leaf chlorophyll content, which can be used to
quickly diagnose nitrogen status of crop in the field [7, 8].
Aboveground biomass (AGB, defined as the total amount
of organic matter of plant aboveground per unit area) plays
an important role in the utilization of light energy and the
formation of dry matter [9, 10]. Thousand kernel weight

(TWK, defined as the weight of a thousand grains) is an indi-
cator of grain size and fullness in breeding and also an impor-
tant basis for field yield prediction [11, 12]. Therefore,
monitoring of TLA, SPAD value, AGB, and TWK can scien-
tifically and efficiently provide evidence for evaluating crop
growth and predicting grain yields. Traditional phenotypic
analysis is laborious, inefficient, and unable to meet the needs
of high-throughput screening for crop breeding [13].
Unmanned aerial vehicles (UAVs) provide a new way to ana-
lyze biophysical traits fast, economically, and nondestruc-
tively with high-spatial and temporal resolution images.

UAV imaging technology has become one of the impor-
tant techniques to obtain high-throughput phenotypic traits
in breeding and has been widely used in wheat [14], maize
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[15], rice [16], sorghum [17], soybean [18], sugar-beet [19],
potatoes [20], etc. Initially, UAV digital images were firstly
applied in extracting crop phenotypic traits, including emer-
gence rate [21], canopy coverage [22–24], leaf area index [4,
5], and aboveground biomass [25–27]. Due to the lack of
near-infrared bands more related to crop nutritional activity,
it is difficult to achieve high-precision monitoring of crop
nutritional traits, such as canopy chlorophyll content and
canopy nitrogen content. Compared with digital images,
UAV multispectral images have near infrared or red edge
bands and have been widely used in chlorophyll, nitrogen,
and other related traits [28]. However, due to the wide band
of multispectral images, most of them have been applied in
field crops under different cultivars, nitrogen application
rates, and planting densities [16, 17, 19, 28]. In crop breeding,
there are small differences of phenotypic traits among varie-
ties, which cannot be reflected by digital and multispectral
images. The UAV hyperspectral image provides spectrums
per pixel and has a unique advantage in capturing subtle fea-
ture information [29–31]. However, there are few reports on
the application of UAV hyperspectral images to hundreds of
breeding materials. The purpose of this study is to analyze the
potential of UAV hyperspectral images in high-throughput
estimation of phenotypic traits of maize inbred lines at the
plot level.

UAV hyperspectral images have its advantages of nar-
rower spectrum band and high spatial resolution for the
extraction of weak phenotypic traits in crop breeding. The
high autocorrelation between narrow bands will inevitably
lead to data redundancy. Therefore, before building the esti-
mation model, it is necessary to screen the sensitive bands of
target features or mathematically transform the spectral data
[32]. Correlation analysis is the most common method used
to screen sensitive bands, but it cannot solve the autocorrela-
tion problem of adjacent bands [33]. Principal component
analysis (PCA) is commonly used in hyperspectral images.
The newly formed principal component information often
obscures the unique characteristic bands of the target objects,
thus affects the universality of the model [34]. SPA is a
forward-loop variable selection method that is widely used
in spectral technology. SPA can effectively extract informa-
tion from severely overlapped spectral information to mini-
mize the effect of collinearity between spectral variables
[35, 36]. CARS is a feature selection method that can filter
out redundant information. CARS has been applied to the
selection of sensitive bands for nitrogen content and soluble
solid content [37, 38]. This study attempted to compare these
two screening methods of sensitive band in monitoring phe-
notypic traits of maize inbred lines by UAV-hyperspectral
imaging.

At present, the applications of UAV hyperspectral image
in breeding are relatively few, which concentrate on the sin-
gle trait of crops, such as yield [39] and dry matter yield
[40]. The objectives of this study were to explore the feasibil-
ity of estimating main traits of maize inbred lines using
UAV-based hyperspectral images of grain filling stage,
including AGB, TLA, SPAD value, and TWK. Firstly, the
sensitive bands of these traits were selected by the SPA and
CARS algorithms. Then, models were constructed using the

PLS and RFmethods by combining all the bands or the bands
screened by SPA and CARS. Finally, the optimal combina-
tion was obtained for predicting AGB, TLA, SPAD value,
and TWK in maize.

2. Materials and Methods

2.1. Experimental Materials and Field Measurements. The
field experiment was conducted in Yuanyang Base of Henan
Agricultural University, Yuanyang County, Xinxiang City,
Henan Province (113.36~114.15 E, 34.55~35.11 N) (Figure 1).
Yuanyang County has abundant light and heat, fertile soil,
and superior agricultural climate resources. The soil type is
mainly tide soil. The annual average temperature is 14°C,
and the annual average precipitation is approximately
573mm.

A set of 498 maize inbred lines with extensive genetic
diversity were used as the study materials. According to the
genetic background differences, these maize materials were
divided into four groups, including tropical, hard rod, non-
hard rod, and mixed materials. The mixed materials
accounted for no more than 60% of the three bloodlines
[41, 42].

The experimental area was approximately 100m from
north to south and 70m from east to west. Zheng 58 was used
as a reference inbred line, which was planted every 50 sam-
ples. Each plot contained only one genotype material, and
the size of each plot was 1:8m × 5m. The row width was
60 cm, and plant spacing was 50 cm. The maize was sowed
manually on June 24, 2019. Fertilization and field manage-
ment were performed in accordance with local management.

Before sowing, 11 ground control points were evenly
arranged in the field to obtain accurate geographical posi-
tioning. The Huashan T8 intelligent RTK system
(CHCNAV–T8, Shanghai, China) was used to locate ground
control points accurately. The plane precision of RTK is ±
(8 + 1 × 10 − 6 × D)mm, and the elevation accuracy is ±
(15 + 1 × 10 − 6 × D)mm. The ground control points were
marked with tiles with a size of 30 cm × 30 cm.

In total, 50 representative materials were selected for the
study according to genetic differences. Representative plants
were selected from the plot on September 22 for destructive
sampling. Maize was in the grain filling stage at this time.
The grain filling stage is the stage of maize grain formation
and is the main period that determines the number of grains.
SPAD-502 instrument was used to measure the upper 1/3,
middle 1/3, and lower 1/3 of maize ear leaves and its upper
and lower leaves. The average value was taken as the SPAD
value of this plot. Subsequently, maize stems, leaves, and ears
were separated. Leaves were placed neatly on black cloth
according to the leaf positions. A SONY ILCE -6300 digital
camera (Sony Corporation, Tokyo, Japan) was used to take
photos for calculating the TLA of individual plant later.
Then, these leaves of each sample were placed into a paper
bag. The samples were killed at 105°C for 30min and dried
at 85°C to a constant weight (approximately 24h). The dry
weight of each organ was measured, and the AGB of the sam-
ple was obtained. In total, 20 kinds of maize were harvested
from 50 species sampled on October 24, 2019. The maize
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cob was threshed, dried, and weighed to calculate the TKW.
Finally, there are 48 effective samples on AGB, TLA, and
SPAD value and 20 samples on TWK.

2.2. Unmanned Aerial Vehicle and Camera Setup. On
September 22, 2019, the weather was sunny, windless, and
cloudless. At approximately 12 : 00, hyperspectral images of
maize were obtained by a DJI Matrice 600 Pro Hexacopter
(DJI, Shenzhen, China) equipped with a Cubert UHD185
hyperspectral imaging spectrometer (Cubert GmbH, Ulm,
Baden Württemberg, Germany). Figure 2 shows the UAV-
based hyperspectral imaging system, which mainly included
the DJI M600, cloud terrace, minicomputer, UHD 185
hyperspectral imager, and reference whiteboard. The UHD
185 hyperspectral imager has the characteristics of full-
frame, nonscanning, and real-time imaging. The spectral
range of the sensor is 450-950 nm, and the spatial resolution
is 4 nm, with 125 bands. Before the drone took off, the dark
current of the UHD 185 camera was corrected by a micro-

computer. The reference whiteboard was used for radiomet-
ric calibration. The surface reflectance of the ground object
was obtained directly during flight. The forward overlap of
the image was 85%, and the lateral overlap was 80%. The
fight altitude aboveground level was 60m, and the flight
speed was approximately 6m/s.

2.3. Image Processing and Data Extraction. Based on obtained
photos of maize leaves, calculation of TLA was performed
(Python 3.0). Firstly, the EXG (Excess green index (EXG))
was used to extract green leaves from background. Then, a
photo containing only maize leaves was obtained after bina-
rization, noise removal (gauss filter), and contour extraction
(canny edge detect operators). Finally, the cumulative sum of
the area that included pixels of maize leaves was calculated to
obtain the TLA.

The collected panchromatic and hyperspectral images
were spliced and corrected, and the plot canopy spectrum
was extracted. In this study, image stitching was carried out
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Figure 1: Geographical location of the experimental site.
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with the CubertPilot software from the Cubert Company in
Germany and the Agisoft PhotoScan software developed by
Agisoft, LLC. Each hyperspectral image and corresponding
panchromatic image were fused using the Cubert-Pilot soft-
ware to obtain the fused hyperspectral image. Then, the Agi-
soft PhotoScan software was used to complete the stitching of
the hyperspectral image based on the point cloud data of the
panchromatic image. Finally, a hyperspectral image with 125
bands was obtained, and the ground resolution is 1 cm.

Hyperspectral data of maize were obtained by removing
the soil background in the plot by k-means cluster analysis
in ENVI 5.3 (Esri Inc., Redlands, USA). The clustering crite-
rion of the k-means algorithm is minimizing the sum of the
squares of the distance from the pixel to the center of the
class. The basic idea is iteratively moving all the centers one
by one until the convergence criterion is satisfied. The overall
classification accuracy was 94.75%, which met the research
requirements.

The vector file of each plot was obtained in the Arcgis
10.6 (Esri Inc., Redlands, USA) software. To avoid the mutual
influence of the plot, the vector file of the plot size was 4:4
mm × 1:2m. The average value of the maize spectral reflec-
tance in each vector region was calculated using IDL lan-
guage as the maize canopy spectrum of the plot.

2.4. Data Analysis and Modeling. In this paper, the SPA and
CARS algorithms were used to select sensitive bands for var-
ious traits. Partial least square regression and random forest
regression were used to compare the model results for the
AGB, TLA, SPAD, and yield of maize. Screening of the bands
was performed with the Matlab R2018a software (Math-
Works, Natick, USA). Statistical analysis, modeling, and fig-
ure drawings were realized with R 3.5.3 (R Development
Core Team, 2019). The schematic diagram of the research
is shown in Figure 3.

2.4.1. Selecting Predictor Variables. The spectral wavelengths
of hyperspectral data are continuous. The similarity between

adjacent wavelengths is very high. There is a large amount of
data redundancy, which will affect the timeliness and accu-
racy of multivariate analysis. Therefore, it is particularly
important to select the characteristic variables that can fully
represent all the wavelength information.

SPA is a variable selection method that can extract effec-
tive information from a large amount of spectral information
and minimize the collinear influence between spectral vari-
ables [43]. In recent years, researchers have used SPA to
select effective wavelengths and achieved good results for
crop nutrition [44], quality [45], soil [46], disease [47], etc.
The root mean square error (RMSE) was used as the evalua-
tion criterion to determine the final optimal band.

CARS is a variable selection method that imitates the
principle of the Darwinian evolution theory “survival of the
fittest” [48]. The optimal variable set is finally determined
by an adaptive reweighted sampling technique, exponential
decay function, and ten-fold interactive test. The selected
variable set with interactive verification has the minimum
root mean square error, which can filter out redundant infor-
mation variables.

2.4.2. The Models. In recent years, machine learning has been
used popularly with the development of computer technol-
ogy. Studies have shown that machine learning can usually
better deal with strong nonlinear relationships between bio-
physical and biochemical traits and reflection spectra than
traditional regression analysis [49]. In this paper, two widely
used data analysis methods were selected to compare and
analyze their accuracy of estimating the AGB, TLA, SPAD
value, and TWK in maize.

PLS regression is a multivariate statistical regression
method. This method was firstly proposed by Geladi and
applied to data analysis [50]. PLS regression effectively com-
bines multiple linear regression, principal component analy-
sis, and correlation analysis, which can better eliminate the
multiple collinearities among variables and solve the problem
of independent variables outnumbering sample numbers.
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Figure 2: UAV-based hyperspectral imaging system.
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RF regression is a kind of data analysis and statistical
method widely used in machine learning based on multideci-
sion tree classification [51]. The core of the algorithm uses the
bootstrap method to carry out simple random sampling from
the original sample set to generate a training sample set. This
method has strong adaptability to the target data set, good
antinoise performance, and strong fitting ability [49, 52].

For determination of AGB, TLA, and SPAD value, the 48
samples were randomly divided into a training set and test set
with a split ratio of 7 : 3, and 10-fold cross validation was used
to train and optimize the models. Leave-one-out (LOO) cross
validation is cumbersome to calculate. However, its sample
utilization rate is the highest than other verification methods,
which is suitable for small samples. There were only 20 sam-
ples for the TWK. Therefore, the TWK prediction adopted
leave-one-out cross validation to the construct model. The
accuracy of the model was evaluated by three indices: the
coefficient of determination (R2), RMSE, and mean absolute
error (MAE). R2 was used to represent the fitting effect
between the simulated value and the measured value. The
closer R2 is to 1, the higher the fitting accuracy of the model.
The calculation formula is as follows.

R2 = 1‐
∑n

i=1 yi − yi
∧� �2

∑n
i=1 yi − yið Þ2 : ð1Þ

The RMSE can reflect the degree of deviation between the
simulated value and the measured value. The smaller the

RMSE value, the higher the fitting accuracy of the estimated
model. The calculation formula is as follows.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 yi − yi
∧� �2

n

vuut
: ð2Þ

TheMAE is the average value of the absolute error, which
can better reflect the actual situation of the predicted value
error. The calculation formula is as follows.

MAE =
∑n

i=1 yi − yi
∧

���
���

n
: ð3Þ

Here, ŷi is the predicted value, �y is the mean of the
observed values, yi is the observed value, and n is the number
of samples.

3. Results

Table 1 shows the basic statistics of the measured AGB, TLA,
SPAD value, and TWK for maize. The coefficient of variation
(CV) of each variable is relatively large, indicating that the
phenotypic traits of different genotypes of maize materials
are significant different.

3.1. The Correlations between Main Traits and the
Hyperspectrum. Figure 4(a) shows the correlations between
AGB, TLA, SPAD value, TWK, and spectral reflectance.
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Figure 3: Main flow chart of the research.
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The correlation coefficients among AGB, TLA, SPAD value,
TWK, and the spectrum were 0.43-0.87, -0.26-0.4, -0.69-
0.14, and -0.5-0.43, respectively (Figure 4(b)). To obtain the
optimal method for predicting TWK, we comparatively
analyzed the correlations among the AGB, TLA, and
SPAD value and TWK. It is found that the SPAD value
had the highest correlation with TWK. The correlation
coefficient was 0.46, which is poor compared with the spec-
trum. Therefore, the following analysis on TWK is based on
hyperspectral data.

3.2. Estimation of Maize Aboveground Biomass. The sensitive
bands for AGB were screened by the SPA and CARS algo-
rithms (Table 2). The correlation coefficients between
718nm and 770nm and AGB were -0.48 and 0.33, respec-
tively. The CARS algorithm selected a wider range of bands.
The bands selected by SPA and CARS and all the bands were
used to estimate AGB. Table 2 lists the results of the AGB
model constructed by the PLS and RF methods. Figure 5
shows a scatter plot of the predicted AGB and the measured
AGB.

Both the PLS and RF models achieved relatively stable
results using all-band modeling. When modeling with the
band selected by SPA, both the PLS and RF regression
models of the training sets had better results than the test
sets. When modeling with the band selected by CARS, the
PLS regression models had a higher accuracy and stability
compared to the models obtained by RF. Through compara-

tive analysis, we determined that the optimal method for
AGB estimation was the CARS-PLS method.

3.3. Estimation of Maize Total Leaf Area. The sensitive bands
for TLA were screened by the SPA and CARS algorithms
(Table 3). The band selected by SPA was 770nm in near-
red light. The correlation coefficient between 770nm and
TLA was 0.4, and this band had the highest correlation with
TLA among all the bands. Figure 6 shows a scatter plot of the
predicted TLA and the measured TLA.

When using all the bands or the band screened by SPA
for modeling, the accuracy of the training set was signifi-
cantly increased compared with the test set by using the
PLS and RF methods. When modeling with the band selected
by CARS, the model constructed by PLS was more accurate
and stable than the model constructed by RF. Similarly,
through comparative analysis, we determined that the opti-
mal method for TLA estimation was the CARS-PLS method
(Table 3).

3.4. Estimation of the Maize SPADValue. The sensitive bands
for the SPAD value were screened by the SPA and CARS
algorithms (Table 4). The bands selected by SPA were
722 nm in red light and 770nm in near-red light. The corre-
lation coefficient between the 722 nm and 770nm and the
SPAD value were -0.66 and 0.14, respectively. The CARS
algorithm selected a wider range of bands, covering a range
of 462-726 nm. Table 4 lists the results of the SPAD value
model constructed by the PLS and RF methods. Figure 7

Table 1: Basic statistics of the field measurements.

Date Period Object Min Max Mean CV (%)

2019.9.22 Grain filling stage

AGB (g/plant) 34.08 255 140.39 30.89

TLA (m2) 0.11 0.43 0.3 23.16

SPAD 21.9 61.77 45.15 18.81

2019.10.24 Harvest time TKW (g) 110 494.68 289.53 34.5

CV: coefficient variation.
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shows a scatter plot of the measured and predicted SPAD
value.

On the whole, compared with AGB and TLA, the estima-
tion model of SPAD value had better accuracy and stability.
Also, we determined that the optimal estimation method
for SPAD value was the combined CARS-PLS (Table 4). It
performed best with R2 of the training set was 0.66, RMSE

of 4.95, and MAE of 4.42, and R2 of the test set was 0.86,
RMSE of 6.24, and MAE of 5.11.

3.5. TWK Prediction. The sensitive bands for TWK were
screened by the SPA and CARS algorithms (Table 5). There
were 8 bands screened by SPA. The correlation coefficients
between spectral reflectance of 454-950nm and TWK were

Table 2: Results of aboveground biomass (AGB) estimation based on different band combinations and PLS or RF regression.

Bands Wavelength (nm) Method
Training set Test set

R2 RMSE MAE R2 RMSE MAE

All bands 450-950
PLS 0.41∗∗ 35.67 31.06 0.38∗ 32.86 25.74

RF 0.43∗∗ 40.34 34.80 0.36∗ 29.74 23.13

SPA 718, 770
PLS 0.57∗∗ 33.53 29.72 0.26n.s. 35.33 28.60

RF 0.58∗∗ 38.18 32.39 0.27n.s. 33.56 24.94

CARS 486, 510-514, 606, 710-718, 758-770, 894-902
PLS 0.55∗∗ 31.33 27.53 0.48∗∗ 28.53 21.23

RF 0.42∗∗ 39.33 33.17 0.27n.s. 32.37 24.24

n.s., ∗, and ∗∗ indicate “not significant,” p < 0:05, and p < 0:01, respectively.

CARS-PLS SPA-PLS SPA-RF

All bands-PLS All bands-RF CARS-RF
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Figure 5: Aboveground biomass (AGB) prediction using different band combinations and the PLS or RF model.
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from -0.44 to 0.43. The CARS algorithm selected more bands
than SPA, with a total of 50 bands, which were located
between 578-718 nm and 874-926nm, respectively. Table 5
lists the results of the TWK model constructed by the PLS
and RF methods. Figure 8 shows a scatter plot of predicted
TWK and the measured TWK.

Regardless of the band combination, the accuracy of the
RF model was far higher than that of the PLS model in
TWK prediction. Also, we determined that the optimal
TWK estimation method was the CARS-RF combination
with R2 value was 0.85, RMSE value of 48.22 g, and MAE
value of 38.53 g.

Table 3: Results of total leaf area (TLA) estimation based on different band combinations and PLS or RF regression.

Bands Wavelength (nm) Method
Training set Test set

R2 RMSE MAE R2 RMSE MAE

All bands 450-950
PLS 0.54∗∗ 0.06 0.05 0.18n.s. 0.07 0.06

RF 0.40∗∗ 0.07 0.05 0.26n.s. 0.09 0.07

SPA 770
PLS 0.56∗∗ 0.06 0.05 0.18n.s. 0.08 0.06

RF 0.48∗∗ 0.07 0.06 0.06n.s. 0.1 0.08

CARS 486, 502, 606, 634, 682, 722, 770-774, 782, 878, 910
PLS 0.73∗∗ 0.04 0.04 0.62∗∗ 0.05 0.04

RF 0.57∗∗ 0.06 0.05 0.05n.s. 0.09 0.07

n.s. and ∗ indicate “not significant” and p < 0:01, respectively.

CARS-RF SPA-PLS SPA-RF

All bands-PLS All bands-RF CARS-PLS
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Figure 6: Total leaf area (TLA) prediction using different band combinations and the PLS or RF model.
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Based on the optimal model of TWK and hyperspectral
data, we predicted the TWK of other maize materials.
According to the predicted TWK (Figure 9), the distribution
interval of TWK on each subgroup genotype was different,
indicating that the prediction results are responsive to the
laws of materials. It could be seen from Figure 9(a) that the
TWK level of TST material was the highest among the four

genotypes, with an average TWK of approximately 300 g,
and materials between 200 and 400 g accounted for nearly
90% of the total material (Figure 9(b)). However, there were
also many outlier values of TST materials, which may be due
to the temperate climate of Henan. In temperate zones, the
growth period of tropical materials is long, and the yields
are not well reflected.

Table 4: Results of the SPAD estimation based on different band combinations and PLS or RF regression.

Bands Wavelength (nm) Method
Training set Test set

R2 RMSE MAE R2 RMSE MAE

All bands 450-950
PLS 0.65∗∗ 5.66 4.94 0.68∗∗ 7.99 6.18

RF 0.50∗∗ 4.99 4.39 0.56∗∗ 8.35 6.82

SPA 722, 770
PLS 0.72∗∗ 5.03 4.29 0.70∗∗ 7.51 6.13

RF 0.61∗∗ 5.45 4.81 0.59∗∗ 8.85 6.55

CARS 462, 470-486, 614, 694, 714-718, 726
PLS 0.66∗∗ 4.95 4.42 0.86∗∗ 6.24 5.11

RF 0.52∗∗ 4.97 4.21 0.74∗∗ 7.44 5.91
∗∗ indicates p < 0:01.
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Figure 7: SPAD value prediction using different band combinations and the PLS or RF model.
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4. Discussion

Currently, most physiological and biochemical traits of crops
were predicted based on UAV digital or multispectral images
to construct vegetation indices [53–55], such as NDVI for
AGB, NDRE for chlorophyll content, and RVI for leaf area
index. However, in the late stage of crop growth, vegetation
indices are so easily saturated that cannot be suitable for esti-
mating crop traits [56]. Considering the grain filling stage of
maize, we use the method of selecting sensitive bands instead
of vegetation index to estimate the maize traits. The original

spectral data could reduce the error propagation and avoid
saturation.

Previous researches showed that nonimaging hyperspec-
tral data had good accuracy in estimating crop traits [57–59].
There were relatively few researches on the application of
UAV imaging hyperspectral data to estimate crop traits.
The applications of UAV imaging were mostly focused on
digital and multispectral images. Compared with digital and
multispectral images, UAV hyperspectral images have more
capability to monitor the subtle features of targets because
of their high spatial and spectral resolution [33]. For

Table 5: Results of TWK estimation based on different band combinations and PLS or RF regression.

Bands Wavelength (nm) Method R2 RMSE MAE

All bands 450-950
PLS 0.25∗ 84.57 69.88

RF 0.84∗∗ 51.97 40.86

SPA 454, 550, 578, 730, 762, 918, 942, 950
PLS 0.24∗ 85.19 69.92

RF 0.75∗∗ 59.64 46.73

CARS 578-718, 874-926
PLS 0.27∗ 83.26 67.16

RF 0.85∗∗ 48.22 38.53
∗ and ∗∗ indicate p < 0:05 and p < 0:01, respectively.
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Figure 8: TWK prediction using different band combinations and the PLS or RF model.
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breeding, the difference of crop traits among varieties is
small. It is necessary to obtain multiple traits at the same
growth stage in order to comprehensively evaluate varieties.
In the study, the UHD185 hyperspectral imager carried by
UAV was used to estimate the traits of 498 maize inbred
lines, including AGB, TLA, SPAD value, and TWK. By using
SPAD value instead of chlorophyll content, the time lag of
laboratory detection can be avoided. Although the relation-
ship between SPAD and chlorophyll content is affected to
some extent by crop species, growth stages, and environment
conditions, it has little effect when applied for small-scale
maize inbred lines at the same growth stage. To minimize
information redundancy, the SPA and CARS methods were
used to screen the most sensitive bands from the full spectra
for predicting various traits. The sensitive bands for AGB,
TLA, SPAD value, and TWK were all located around
770nm in the near-red region, which was consistent with
previous researches [60–64]. On the whole, compared with
the bands selected by the SPA algorithm, CARS could obtain
the optimal variable subset through an adaptive weighted
sampling technique and exponential decay function. This
method had also been applied to the study of the AGB of
sugar beets [34]. Our research estimated several common
crop traits using the CARS method and obtained similar
bands and results. The narrow bands selected by the SPA
and CARS algorithms are exclusive compared with the wide
bands of multispectral images. The information obtained
from wide bands is fused together, which is not conducive
to data mining. Narrow bands of hyperspectral image have
more subtle and sensitive abilities to capture differences.

The modeling method has a great influence on the esti-
mation accuracy. This study tested two statistical regression
methods, PLS and RF. For the AGB, TLA, and SPAD, the

model results of the training set and test set for PLS were
basically consistent, and the model was robust. The results
were consistent with those of Yue et al. [65], who evaluated
the advantages and disadvantages of several models in esti-
mating wheat biomass. For the RF model, the results of the
training set were better than those of the PLS model. With
regard to TWK prediction, the RF model had a much higher
accuracy in leave-one-out cross validation than the PLS
model. It may be the overfitting of RF model caused by fewer
samples. We will further test the overfitting effect of the RF
model with more samples. Random forest has a great advan-
tage over other algorithms due to its strong adaptability to
datasets, which reflects the advantages of classical machine
learning over traditional regression analysis [60, 66].

In breeding, hundreds or even thousands of plots are usu-
ally existed in a small area. The efficiency of manual screen-
ing of superior varieties is low. In this study, we used the
UAV hyperspectral images to realize the estimation of multi-
ple traits of maize inbred lines. It will provide new data
sources and technical means for efficiently obtaining field
maize phenotypic information and yield predictions and for
screening high-yield maize varieties. The estimation accuracy
of maize traits in our research was relatively low, which was
probably due to the insufficient diversification of experimen-
tal data. We also believe that modeling with multiple growing
stages data will improve the estimation accuracy. However,
the model constructed in this way will produce greater errors
when applied for monitoring crop traits in a single growing
stage. The information of other growing stages will adversely
affect the estimation of single growing stage. In practical
application, monitoring maize traits of a specific single grow-
ing stage is more useful for breeding. UAV hyperspectral data
have been widely used in the agriculture and forestry fields
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Figure 9: Prediction results of maize TWK based on the optimal combination of the CARS-RF method. Boxplot (a) and percentage chart of
the yield levels (b) of different genotypes of materials.
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[61, 62], but research on their combination with breeding is
still relatively lacking. Many previous studies have focused
on a single trait, such as plant height, AGB, or leaf area index.
Multiple phenotypic traits need to be comprehensively con-
sidered in breeding. Our current research not only consid-
ered the population structure traits of AGB and TLA but
also explored the nutrition index SPAD value and finally
used hyperspectral data to predict the maize TWK for a wide
range of maize materials. For tropical and subtropical mate-
rials, there are relatively many singular values in TWK pre-
diction, which may be due to the lesser application of
related materials in modeling, resulting in the poor represen-
tativeness of models.

5. Conclusions

In this paper, the UHD185 hyperspectral imager mounted on
a UAV was used to obtain hyperspectral images of maize
inbred lines in the field. The feasibility of hyperspectral diag-
nosis of the AGB, TLA, and SPAD value and TWK was stud-
ied. A model for quantitatively estimating the AGB, TLA,
SPAD value and TWK was constructed, compared, and ana-
lyzed using two sensitive band selection methods, SPA and
CARS, and two modeling methods, PLS and RF. The major
findings are as follows:

(1) The band most relevant to AGB was 706nm
(R = −0:54). The band most relevant to the SPAD
value was 714nm in the red-edge region (R = −0:69
). The band most relevant to TLA was 770nm in
the near-red region (R = 0:4). Compared with the
AGB, TLA, and SPAD value, the correlation between
the band at 694nm and TWK was the best (R = −0:5)

(2) Compared with SPA on the whole, CARS selected
more feature bands that had better accuracies in esti-
mating the AGB, TLA, and SPAD value and TWK. In
terms of AGB, TLA, and SPAD value, the optimal
method was CARS-PLS. The PLS model had a better
prediction accuracy than the RF model based on the
entire spectra, bands screened by SPA or CARS.
Regarding the maize TWK prediction, the optimal
method was CARS-RF, and the RF model performed
better than the PLS model. Based on the constructed
model, TWK predictions for the remaining materials
were conducted. The distribution interval of TWK
among the four subgroups was different, indicating
that there was a response of the TWK prediction to
the laws of the maize materials. Further validation
of the TWK prediction for other materials needs to
be thoroughly conducted

Data Availability

The data used in this study are freely available. Anyone who
wants to use the data can contact the corresponding author
Yuntao Ma. The author is with the College of Land Science
and Technology, China Agricultural University, Beijing,
100193, China (e-mail: yuntao.ma@cau.edu.cn).

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments

This work was jointly supported by grants from the National
Key Research and Development Program (2016YFD0300202)
and the Inner Mongolia Science and technology project
(2019ZD024, 2019CG093, and 2020GG00038).

References

[1] N. Long, Y. Assefa, R. Schwalbert, and L. Ciampitti, “Maize
yield and planting date relationship: a synthesis-analysis for
US high-yielding contest-winner and field research data,”
Frontiers in Plant Science, vol. 8, article 2106, 2017.

[2] S. Zhuang, P. Wang Ping, B. Jiang, and M. Li, “Learned fea-
tures of leaf phenotype to monitor maize water status in the
fields,” Computers and Electronics in Agriculture, vol. 172, arti-
cle 105347, 2020.

[3] S. Khanal, J. Fulton, A. Klopfenstein, N. Douridas, and
S. Shearer, “Integration of high resolution remotely sensed
data and machine learning techniques for spatial prediction
of soil properties and corn yield,” Computers and Electronics
in Agriculture, vol. 153, pp. 213–225, 2018.

[4] D. Zhang, J. Liu, W. Ni et al., “Estimation of Forest leaf area
index using height and canopy cover information extracted
from unmanned aerial vehicle stereo imagery,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 12, no. 2, pp. 471–481, 2019.

[5] Y. Che, Q. Wang, Z. Xie et al., “Estimation of maize plant
height and leaf area index dynamics using an unmanned aerial
vehicle with oblique and nadir photography,” Annals of Bot-
any, vol. 126, no. 4, pp. 765–773, 2020.

[6] C. S. T. Daughtry, C. L. Walthall, M. S. Kim, E. B. De Colstoun,
and J. E. McMurtrey Iii, “Estimating corn leaf chlorophyll con-
centration from leaf and canopy reflectance,” Remote Sensing
of Environment, vol. 74, no. 2, pp. 229–239, 2000.

[7] A. Cartelat, Z. G. Cerovic, Y. Goulas et al., “Optically assessed
contents of leaf polyphenolics and chlorophyll as indicators of
nitrogen deficiency in wheat (Triticum aestivum L.),” Field
Crops Research, vol. 91, no. 1, pp. 35–49, 2005.

[8] L. Deng, Z. Mao, X. Li, Z. Hu, F. Duan, and Y. Yan, “UAV-
based multispectral remote sensing for precision agriculture:
a comparison between different cameras,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 146, pp. 124–136,
2018.

[9] X. Jin, S. Madec, D. Dutartre, B. de Solan, A. Comar, and
F. Baret, “High-throughput measurements of stem characteris-
tics to estimate ear density and above-ground biomass,” Plant
Phenomics, vol. 2019, article 4820305, 10 pages, 2019.

[10] J. Bendig, K. Yu, H. Aasen et al., “Combining UAV-based plant
height from crop surface models, visible, and near infrared
vegetation indices for biomass monitoring in barley,” Interna-
tional Journal of Applied Earth Observation and Geoinforma-
tion, vol. 39, pp. 79–87, 2015.

[11] C. Sun, F. Zhang, X. Yan et al., “Genome-wide association
study for 13 agronomic traits reveals distribution of superior
alleles in bread wheat from the Yellow and Huai Valley of
China,” Plant Biotechnology Journal, vol. 15, no. 8, pp. 953–
969, 2017.

12 Plant Phenomics



[12] Y. Fang, Y. Du, J. Wang et al., “Moderate drought stress
affected root growth and grain yield in old, modern and newly
released cultivars of winter wheat,” Frontiers in Plant Science,
vol. 8, p. 672, 2017.

[13] X. Jin, P. Zarco-Tejada, U. Schmidhalter et al., “High-through-
put estimation of crop traits: a review of ground and aerial
phenotyping platforms,” IEEE Geoscience and Remote Sensing
Magazine, vol. 99, no. 1, pp. 200–231, 2021.

[14] J. Baresel, P. Rischbeck, Y. Hu et al., “Use of a digital camera as
alternative method for non-destructive detection of the leaf
chlorophyll content and the nitrogen nutrition status in
wheat,” Computers and Electronics in Agriculture, vol. 140,
pp. 25–33, 2017.

[15] L. Zhou, X. Gu, S. Cheng, G. Yang, M. Shu, and Q. Sun, “Anal-
ysis of plant height changes of lodged maize using UAV-
LiDAR data,” Agriculture, vol. 10, no. 5, p. 146, 2020.

[16] X. Zhou, H. B. Zheng, X. Q. Xu et al., “Predicting grain yield in
rice using multi-temporal vegetation indices from UAV-based
multispectral and digital imagery,” ISPRS Journal of Photo-
grammetry and Remote Sensing, vol. 130, pp. 246–255, 2017.

[17] A. B. Potgieter, B. George-Jaeggli, S. C. Chapman et al.,
“Multi-spectral imaging from an unmanned aerial vehicle
enables the assessment of seasonal leaf area dynamics of
Sorghum breeding lines,” Frontiers in Plant Science, vol. 8,
article 1532, 2017.

[18] X. Zhang, J. Zhao, G. Yang et al., “Establishment of plot-yield
prediction models in soybean breeding programs using UAV-
based hyperspectral remote sensing,” Remote Sensing, vol. 11,
no. 23, article 2752, 2019.

[19] Y. Cao, G. Li, Y. Luo, Q. Pan, and S. Zhang, “Monitoring of
sugar beet growth indicators using wide-dynamic-range vege-
tation index (WDRVI) derived from UAV multispectral
images,” Computers and Electronics in Agriculture, vol. 171,
article 105331, 2020.

[20] B. Li, X. Xu, J. Han et al., “The estimation of crop emergence in
potatoes by UAV RGB imagery,” Plant Methods, vol. 15, no. 1,
pp. 1–13, 2019.

[21] T. Liu, R. Li, X. Jin et al., “Evaluation of seed emergence unifor-
mity of mechanically sown wheat with UAV RGB imagery,”
Remote Sensing, vol. 9, no. 12, article 1241, 2017.

[22] T. Duan, B. Zheng, W. Guo, S. Ninomiya, Y. Guo, and S. C.
Chapman, “Comparison of ground cover estimates from
experiment plots in cotton, sorghum and sugarcane based on
images and ortho-mosaics captured by UAV,” Functional
Plant Biology, vol. 44, no. 1, pp. 169–183, 2017.

[23] O. Ahmed, A. Shemrock, D. Chabot et al., “Hierarchical land
cover and vegetation classification using multispectral data
acquired from an unmanned aerial vehicle,” International
Journal of Remote Sensing, vol. 38, no. 8-10, pp. 2037–2052,
2017.

[24] G. Yan, L. Li, A. Coy et al., “Improving the estimation of frac-
tional vegetation cover from UAV RGB imagery by colour
unmixing,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 158, pp. 23–34, 2019.

[25] L. Han, G. Yan, H. Dai et al., “Modeling maize above-ground
biomass based on machine learning approaches using UAV
remote-sensing data,” Plant Methods, vol. 15, no. 1, pp. 1–19,
2019.

[26] M. Maimaitijiang, V. Sagan, P. Sidike et al., “Vegetation index
weighted canopy volume model (CVMVI) for soybean bio-
mass estimation from unmanned aerial system-based RGB

imagery,” ISPRS Journal of Photogrammetry and Remote Sens-
ing, vol. 151, pp. 27–41, 2019.

[27] H. Zheng, T. Cheng, M. Zhou et al., “Improved estimation of
rice aboveground biomass combining textural and spectral
analysis of UAV imagery,” Precision Agriculture, vol. 20,
no. 3, pp. 611–629, 2019.

[28] S. Liu, L. Li, W. Gao et al., “Diagnosis of nitrogen status in win-
ter oilseed rape (Brassica napus L.) using in-situ hyperspectral
data and unmanned aerial vehicle (UAV) multispectral
images,” Computers and Electronics in Agriculture, vol. 151,
pp. 185–195, 2018.

[29] Z. Li, Z. Li, D. Fairbairn et al., “Multi-LUTs method for canopy
nitrogen density estimation in winter wheat by field and UAV
hyperspectral,” Computers and Electronics in Agriculture,
vol. 162, pp. 174–182, 2019.

[30] Z. Mao, L. Deng, F. Duan, X.-J. Li, and D.-Y. Qiao, “Angle
effects of vegetation indices and the influence on prediction
of SPAD values in soybean and maize,” International Journal
of Applied Earth Observation and Geoinformation, vol. 93, arti-
cle 102198, 2020.

[31] W. Zhu, Z. Sun, T. Yang et al., “Estimating leaf chlorophyll
content of crops via optimal unmanned aerial vehicle hyper-
spectral data at multi-scales,” Computers and Electronics in
Agriculture, vol. 178, article 105786, 2020.

[32] J. Zhang, H. Tian, D. Wang, H. Li, and A. M. Mouazen, “A
novel approach for estimation of above-ground biomass of
sugar beet based on wavelength selection and optimized sup-
port vector machine,” Remote Sensing, vol. 12, no. 4, p. 620,
2020.

[33] D. Liu, H. Pu, D.-W. Sun, L. Wang, and X.-A. Zeng, “Combi-
nation of spectra and texture data of hyperspectral imaging for
prediction of pH in salted meat,” Food Chemistry, vol. 160,
pp. 330–337, 2014.

[34] N. Zhang, X. Zhang, G. Yang, C. Zhu, L. Huo, and H. Feng,
“Assessment of defoliation during the Dendrolimus tabulae-
formis Tsai et Liu disaster outbreak using UAV-based hyper-
spectral images,” Remote Sensing of Environment, vol. 217,
pp. 323–339, 2018.

[35] F. Wang, F. Wang, Y. Zhang, J. Hu, J. Huang, and J. Xie, “Rice
yield estimation using parcel-level relative spectral variables
from UAV-based hyperspectral imagery,” Frontiers in Plant
Science, vol. 10, p. 453, 2019.

[36] P. R. Shorten, S. R. Leath, J. Schmidt, and K. Ghamkhar, “Pre-
dicting the quality of ryegrass using hyperspectral imaging,”
Plant Methods, vol. 15, no. 1, p. 63, 2019.

[37] T. Adão, J. Hruška, L. Pádua et al., “Hyperspectral imaging: a
review on UAV-based sensors, data processing and applica-
tions for agriculture and forestry,” Remote Sensing, vol. 9,
no. 11, article 1110, 2017.

[38] X. Gu, Y. Wang, Q. Sun, G. Yang, and C. Zhang, “Hyperspec-
tral inversion of soil organic matter content in cultivated land
based on wavelet transform,” Computers and Electronics in
Agriculture, vol. 167, article 105053, 2019.

[39] A. Moghimi, C. Yang, and J. A. Anderson, “Aerial hyperspec-
tral imagery and deep neural networks for high-throughput
yield phenotyping in wheat,” Computers and Electronics in
Agriculture, vol. 172, article 105299, 2020.

[40] R. J. Galán, A.-M. Bernal-Vasquez, C. Jebsen et al., “Integra-
tion of genotypic, hyperspectral, and phenotypic data to
improve biomass yield prediction in hybrid rye,” Theoretical
and Applied Genetics, vol. 133, no. 11, pp. 3001–3015, 2020.

13Plant Phenomics



[41] X. Yang, S. Gao, S. Xu et al., “Characterization of a global
germplasm collection and its potential utilization for analysis
of complex quantitative traits in maize,” Molecular Breeding,
vol. 28, no. 4, pp. 511–526, 2011.

[42] X. Yang, J. Yan, T. Shah et al., “Genetic analysis and character-
ization of a newmaize association mapping panel for quantita-
tive trait loci dissection,” Theoretical and Applied Genetics,
vol. 121, no. 3, pp. 417–431, 2010.

[43] J. Zhang, R. Benoit, and D. Rogge, “The successive projection
algorithm (SPA), an algorithm with a spatial constraint for
the automatic search of endmembers in hyperspectral data,”
Sensors, vol. 8, no. 2, pp. 1321–1342, 2008.

[44] S. Soares, A. Gomes, M. Araujo, A. Filho, and R. Galvão, “The
successive projections algorithm,” Trends in Analytical Chem-
istry, vol. 42, pp. 84–98, 2013.

[45] B. Yang, J. Chen, L. Chen, W. Cao, X. Yao, and Y. Zhu, “Esti-
mation model of wheat canopy nitrogen content based on sen-
sitive bands,” Transactions of the Chinese Society of
Agricultural Engineering, vol. 31, pp. 176–182, 2015.

[46] H. Xiao, A. Li, M. Li et al., “Quality assessment and discrimina-
tion of intact white and red grapes from Vitis vinifera L. at five
ripening stages by visible and near-infrared spectroscopy,”
Scientia Horticulturae, vol. 233, pp. 99–107, 2018.

[47] M. Araújo, T. Saldanha, R. Galvão, T. Yoneyama, H. Chame,
and V. Visani, “The successive projections algorithm for vari-
able selection in spectroscopic multicomponent analysis,”
Chemometrics and Intelligent Laboratory Systems, vol. 57,
no. 2, pp. 65–73, 2001.

[48] H. Li, Y. Liang, Q. Xu, and D. Cao, “Key wavelengths screening
using competitive adaptive reweighted sampling method for
multivariate calibration,” Analytica Chimica Acta, vol. 648,
no. 1, pp. 77–84, 2009.

[49] J. Behmann, A. Mahlein, T. Rumpf, C. Romer, and L. Plumer,
“A review of advanced machine learning methods for the
detection of biotic stress in precision crop protection,” Preci-
sion Agriculture, vol. 16, no. 3, pp. 239–260, 2015.

[50] P. Geladi and B. R. Kowalski, “Partial least-squares regression:
a tutorial,” Analytica Chimica Acta, vol. 185, pp. 1–17, 1986.

[51] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[52] L. Wang, X. Zhou, X. Zhu, Z. Dong, and W. Guo, “Estimation
of biomass in wheat using random forest regression algorithm
and remote sensing data,” Crop Journal, vol. 4, no. 3, pp. 212–
219, 2016.

[53] B. Shipley and T. Vu, “Dry matter content as a measure of dry
matter concentration in plants and their parts,” New Phytolo-
gist, vol. 153, no. 2, pp. 359–364, 2002.

[54] J. Crain, S. Mondal, J. Rutkoski, R. P. Singh, and J. Poland,
“Combining high-throughput phenotyping and genomic
information to increase prediction and selection accuracy in
wheat breeding,” Plant Genome, vol. 11, no. 1, article 170043,
2018.

[55] M. Du and N. Noguchi, “Monitoring of wheat growth status
and mapping of wheat yield’s within-field spatial variations
using color images acquired from UAV-camera system,”
Remote Sensing, vol. 9, no. 3, p. 289, 2017.

[56] P. Thenkabail, B. Smith, and E. Pcuw, “Hyperspectral vegeta-
tion indices and their relationships with agricultural crop
characteristics,” Remote Sensing of Environment, vol. 71,
no. 2, pp. 158–182, 2000.

[57] H. Li, X. Song,W. Feng et al., “Improved remote sensing of leaf
nitrogen concentration in winter wheat using multi-angular
hyperspectral data,” Remote Sensing of Environment, vol. 174,
pp. 122–133, 2016.

[58] X. Jin, X. Xu, H. K. Feng et al., “Estimation of grain protein
content in winter wheat by using three methods with hyper-
spectral data,” International Journal of Agriculture and Biol-
ogy, vol. 16, no. 3, pp. 1–7, 2014.

[59] X. Jin, L. Kumar, Z. Li, X. Xu, G. Yang, and J. Wang, “Estima-
tion of winter wheat biomass and yield by combining the
AquaCrop model and field hyperspectral data,” Remote Sens-
ing, vol. 8, no. 12, pp. 1–15, 2016.

[60] M. Jia, W. Li, K. Wang et al., “A newly developed method to
extract the optimal hyperspectral feature for monitoring leaf
biomass in wheat,” Computers and Electronics in Agriculture,
vol. 165, article 104942, 2019.

[61] P. Hansen and J. Schjoerring, “Reflectance measurement of
canopy biomass and nitrogen status in wheat crops using nor-
malized difference vegetation indices and partial least squares
regression,” Remote Sensing of Environment, vol. 86, no. 4,
pp. 542–553, 2003.

[62] B. Yoder and R. Waring, “The normalized difference vegeta-
tion index of small Douglas-fir canopies with varying chloro-
phyll concentrations,” Remote Sensing of Environment,
vol. 49, no. 1, pp. 81–91, 1994.

[63] W. L. Bauerle, D. J. Weston, J. D. Bowden, J. B. Dudley, and
J. E. Toler, “Leaf absorptance of photosynthetically active radi-
ation in relation to chlorophyll meter estimates among woody
plant species,” Scientia Horticulturae, vol. 101, no. 1-2,
pp. 169–178, 2004.

[64] D. Horler, M. Dockray, and J. Barber, “The red edge of plant
leaf reflectance,” International Journal of Remote Sensing,
vol. 4, no. 2, pp. 273–288, 1983.

[65] J. Yue, H. Feng, X. Jin et al., “A comparison of crop parameters
estimation using images from UAV-mounted snapshot hyper-
spectral sensor and high-definition digital camera,” Remote
Sensing, vol. 10, no. 7, article 1138, 2018.

[66] L. Fan, J. Zhao, X. Xu et al., “Hyperspectral-based estimation of
leaf nitrogen content in corn using optimal selection of multi-
ple spectral variables,” Sensors, vol. 19, no. 13, article 2898,
2019.

14 Plant Phenomics


	The Application of UAV-Based Hyperspectral Imaging to Estimate Crop Traits in Maize Inbred Lines
	1. Introduction
	2. Materials and Methods
	2.1. Experimental Materials and Field Measurements
	2.2. Unmanned Aerial Vehicle and Camera Setup
	2.3. Image Processing and Data Extraction
	2.4. Data Analysis and Modeling
	2.4.1. Selecting Predictor Variables
	2.4.2. The Models


	3. Results
	3.1. The Correlations between Main Traits and the Hyperspectrum
	3.2. Estimation of Maize Aboveground Biomass
	3.3. Estimation of Maize Total Leaf Area
	3.4. Estimation of the Maize SPAD Value
	3.5. TWK Prediction

	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments

