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Abstract: Timely monitoring and early warning of soil salinity are crucial for saline soil management. Environmental variables are 

commonly used to build soil salinity prediction model. However, few researches have been done to summarize the environmental sensi-

tive variables for soil electrical conductivity (EC) estimation systematically. Additionally, the performance of Multiple Linear Regres-

sion (MLR), Geographically Weighted Regression (GWR), and Random Forest regression (RFR) model, the representative of current 

main methods for soil EC prediction, has not been explored. Taking the north of Yinchuan plain irrigation oasis as the study area, the 

feasibility and potential of 64 environmental variables, extracted from the Landsat 8 remote sensed images in dry season and wet season, 

the digital elevation model, and other data, were assessed through the correlation analysis and the performance of MLR, GWR, and RFR 

model on soil salinity estimation was compared. The results showed that: 1) 10 of 15 imagery texture and spectral band reflectivity en-

vironmental variables extracted from Landsat 8 image in dry season were significantly correlated with soil EC, while only 3 of these 

indices extracted from Landsat 8 image in wet season have significant correlation with soil EC. Channel network base level, one of the 

terrain attributes, had the largest absolute correlation coefficient of 0.47 and all spatial location factors had significant correlation with 

soil EC. 2) Prediction accuracy of RFR model was slightly higher than that of the GWR model, while MLR model produced the largest 

error. 3) In general, the soil salinization level in the study area gradually increased from south to north. In conclusion, the remote sensed 

imagery scanned in dry season was more suitable for soil EC estimation, and topographic factors and spatial location also play a key 

role. This study can contribute to the research on model construction and variables selection for soil salinity estimation in arid and semi-

arid regions. 
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1  Introduction 

As a global environmental hazard, soil salinity adversely 
affects plant growth, crop production, soil quality and 
water quality, resulting in loss of farmland and soil deg-

radation, especially in arid and semi-arid irrigated areas 
(Allbed and Kumar, 2013; El Harti et al., 2016; Ma et 
al., 2018). The Food and Agriculture Organization of the 
United Nations has estimated that about 397 million ha 
land covered by saline soil is distributed across most 
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continents (Koohafkan and Stewart, 2008). It is neces-
sary to map and monitor soil salinity to establish the 
areal extent of saline soil and track changes in salinity in 
order to formulate appropriate and timely management 
strategies for such soils (Shrestha, 2006). 

Conventional methods of measuring soil salinity are 
based on field sampling and laboratory analysis, which 
are time-consuming, costly, and inefficient. Moreover, 
these methods are not feasible for frequent monitoring 
of large areas (Nanni and Demattê, 2006; Farifteh et al., 
2007; Vermeulen and Van Niekerk, 2017). A commonly 
used alternative method is to use some easily available 
indices to indirectly reflect soil salinization. For exam-
ple, five salinity indices, three vegetation indices, three 
spectral intensity indices, and seven spectral band re-
flectivity indices extracted from the MODIS Terra data 
were used to generate a predicted salinity (Bouaziz et 
al., 2011). Bannari et al. (2008) found that ASTER-SI 
which combines the SWIR1 and SWIR2 bands showed 
high correlation to electrical conductivity (EC), while 
the normalized difference salinity index (NDSI) calcu-
lated by the blue and red bands had low correlation with 
soil EC. Zhang et al. (2015) used the time series nor-
malized difference vegetation index (NDVI) and en-
hanced vegetation index (EVI) to estimate the soil EC. 
Cai et al. (2010) found that the image texture traits were 
good indicators for saline soil classification. In addition, 
Peng et al. (2019) indicated that terrain conditions play 
an important role in soil salinity estimation. Elnaggar 
and Noller (2010) found a significant correlation be-
tween soil EC and elevation, slope and wetness indices. 
Vermeeulen et al. (2017) found significant correlations 
between soil EC and environmental factors such as the 
distance to drainage, profile curvature, slope and 
groundwater table depth. Taghizadeh-mehrjardi et al. 
(2016) found that the wetness indices, the valley bottom 
flatness index and the elevation were the most important 
predictors of soil salinity. Furthermore, some scholar 
considered the evapotranspiration (ET) as a good indi-
cator of soil salination as high ET cause more salt to 
accumulate on the soil surface (Abou and Ali, 2018). In 
summary, most of the studies using indirect variables to 
predict soil salinity mainly choose environmental vari-
ables from the following two perspectives: 1) the spec-
tral characteristics of the surface and the overlying cover 
affected by saline soil, including the spectral reflectance 
of the bare soil, the spectrum and coverage of plants in 

the crop growing season (or wet season); 2) the forma-
tion factors of the saline soil, such as topographical fac-
tors, soil properties and meteorological factors. How-
ever, few researches have been done to summarize and 
assess the environmental sensitive variables for soil 
(EC) estimation systematically. 

Environmental variables are commonly integrated 
with various methods to predict soil salinity. On the one 
hand, Statistical analysis, especially linear regression, 
has great potential in soil EC modeling because it is 
simple and efficient. Moreover, it is commonly used to 
evaluate the effectiveness of independent variables in 
predicting soil EC as it can directly reflect the relation-
ship between influencing factors and soil salinity. For 
example, Allbed et al. (2014) estimated the soil salinity 
using Multiple linear regression (MLR) and remote 
sensing indicators extracted from IKONOS images, and 
the coefficient of determination (R2) for all models were 
higher than 0.65, signifying a high prediction accuracy. 
On the other hand, a large number of studies have 
shown that machine learning algorithms, such as artifi-
cial neural network (ANN), support vector regression 
(SVR), decision tree (DT), and especially random forest 
regression (RFR), can achieve high prediction accuracy 
in soil properties mapping (Lu et al., 2018). Numerous 
studies indicate that RFR performs well and can obtain 
robust estimations. For example, sea surface salinity 
estimates by ANN and RFR indicated that RFR model 
was usually stable with different parameters compared 
to the ANN model (Liu et al., 2013). Wang et al. (2018a) 
proposed that the RFR exhibited a better performance in 
predicting SOC stocks than the BRT regardless of input 
variables. Rodriguez-Galiano et al. (2015) compared the 
performance of ANN, regression trees, RFR, and SVR 
for mapping of mineral perspectivity and the results 
showed that RFR showed higher stability and robust-
ness. Furthermore, some studies indicated that geo-
graphically weighted regression (GWR) can obtain ac-
curate predictions by building the spatial non-stationary 
relationship between dependent and independent vari-
ables. Wu et al. (2016) found that GWR had a higher 
prediction accuracy than MLR and Co-kriging for soil 
salinity estimation in the Yellow River Delta. Unfortu-
nately, the performance of RFR, MLR, and GWR for 
predicting soil salinity has not been examined. 

The irrigation district in the northern Yinchuan Plain, 
China is one of the largest and oldest oases in the Yellow 
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River Basin. Like most irrigation districts in semi-arid 
areas, soil salinity is one of the primary agronomic con-
straints. Mapping and monitoring soil salinity are crucial 
for the development of local precision agriculture. In this 
study, we firstly summarized 64 environmental variables, 
including 11 terrain attributes, 12 salinity indices, 30 
spectral band reflectivity and imagery texture indices in 
dry season and wet season, 3 vegetation indices, 3 spectral 
intensity indices, 3 spatial location factors, evapotranspi-
ration, and the content of silt and clay. Then the optimal 
variables for the three models were selected by the corre-
lation analysis between the 184 topsoil EC and 64 envi-
ronmental variables. Lastly, the performance of MLR, 
GWR, and RFR model on soil salinity prediction was 
compared. Objectives of this study are to: 1) select the 
optimal environmental variables used to estimate soil 
salinity; 2) compare the performance of the MLR, GWR, 
and RFR on soil salinity prediction; 3) reveal the spatial 
distribution of soil salinity in the study area. This research 
can provide reference for similar study and the results 
may help the government to make appropriate and timely 
management strategies for saline land. 

2  Materials and Methods 

2.1  Study area 
This study was carried out in the northern Yinchuan 
Plain irrigation oasis, in Ningxia Hui Autonomous Re-
gion, China. The study area encompasses two counties 
and five districts, Pingluo and Helan counties, Huinong 
District, Dawukou District, Jinfeng District, Xixia Dis-
trict, and Xingqing District. It lies between the latitudes 
of 38.27°N and 39.39°N and the longitudes of 105.85°E 
and 106.98°E, with an east-west width of approximately 
51 km, north-south length of approximately 130 km and 
area of 6967.80 km2 (Fig. 1). The climate is semi-arid 
with cold winters and long warm summer. The average 
annual precipitation and evaporation are 185 mm and 
1825 mm, respectively, with a ratio of evaporation to 
precipitation close to 10 (Dou et al., 2011; Sidike et al., 
2014). Due to the high evaporation to precipitation ratio, 
poor drainage conditions, geologic characteristics and 
some inappropriate management, soil salinity has al-
ways been the primary agronomic constraint to sustain-
able development in the study area. 

 

Fig. 1  Study area in the north of Yinchuan Plain irrigation district, Ningxia Hui Autonomous Region, China and spatial distribution of 
soil samples 
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2.2  Data source  
In this study, the topsoil EC, Landsat 8 remote sensed 
image, digital elevation model, MOD16 global 
evapotranspiration product, and soil texture map were 
used to predict soil salinity.  

Firstly, a total of 184 composite topsoil (0–20 cm) 
samples were collected from March 29 to April 6, 2017 
(Fig. 1). Samples were collected using a 2.5 km × 2.5 
km grid-sampling method combined with stratified 
sampling based on land use type in 2015 (The data set is 
provided by Data Center for Resources and Environ-
mental Sciences, Chinese Academy of Sciences 
(RESDC), http://www.resdc.cn). Each sample location 
was recorded by the Global Positioning System. In order 
to reduce the errors resulting from spatial mismatch, 
each composite soil sample consisted of four 
sub-samples collected at a distance of 10 m to the east, 
west, south, and north of the sample location. With wa-

ter to soil ratio of 5︰1, the soil EC was measured using 

a conductivity meter (Bao, 2001). The soil salt content 
(SSC) of 19 samples with different EC levels was 
measured using a Dezimalwaage after drying as de-
scribed by Bao (2001).  

Secondly, two Landsat 8 images scanned on February 
10th and September 6th, 2017 were used to extract en-
vironmental variables for building soil salinity predic-
tion model. According to previous studies, dry season 
(around March, a time when salt surface features are 
enhanced and the impact of soil salinity on surface at-
tributes is intensified) is the optimum time to predict 
soil salinity from remote sensing imagery due to the 
extensive bare soil, while others suggested that soil sa-
linity can be detected by vegetation indices in wet sea-
son, namely the plant growing season (Zhou et al., 2012; 
Zhang et al., 2015). Therefore, the two images scanned 
in dry season and wet season were selected and the cor-
responding Landsat path and row were 29 and 33, re-
spectively. In order to remove atmospheric artifacts, 
atmospheric correction was performed on the image 
using the Flash model based on ENVI 5.3 software. In 
addition, the digital elevation model with a spatial reso-
lution of 30 m were used to extract terrain attributes of 
the study area, and the data can be download from the 
website of www.usgs.gov.  

Lastly, an 8-day composite MODIS MOD16 global 
evapotranspiration product (download from https:// 
ladsweb.modaps.eosdis.nasa.gov/) acquired on Septem-

ber 6th, 2017 was used to obtain the ET of the study area 
and it was resampled to 30 m to keep a consistent spatial 
resolution with Landsat 8 remote sensing image. The soil 
texture map was provided by a study (Li et al., 2018).  

2.3  Environmental variables for soil salinity pre-
diction model construction 
On the one hand, four kinds of environmental variables 
related to the formation of saline soil, including terrain 
attributes, spatial location, soil matrix, and meteorological 
factor, were summarized according related studies. To be 
specific, 11 terrain attributes extracted from the digital 
elevation model using SAGA GIS software were used to 
depict the terrain traits which affect soil salt movement 
and redistribution. The specific analysis refers to Con-
rad’s research (Conrad et al., 2015). Three spatial location 
factors, namely the distance to the Yellow River and 
drainage ditch, the longitude and latitude coordinates of 
the projection coordinate system, were also considered as 
environment variables as the spatial distribution of soil 
EC is generally correlated. The content of silt and clay 
was used to signify the properties of soil matrix. The ET 
was used to represent the meteorological factor.  

On the other hand, referring to previous study, five 
kinds of environmental variables signifying the spectral 
characteristic of saline land surface were summarized to 
build soil salinity prediction model, including the band 
spectral reflectivity, imagery textures, salinity indices, 
spectral intensity indices, and vegetation indices. Spe-
cifically, 14 bands spectral reflectivity of the two images 
with the spatial resolution of 30 m in visible and infra-
red wavelengths, including B1 (Coastal, 0.43–0.45 μm), 
B2 (Blue, 0.45–0.51 μm), B3 (Green, 0.53–0.59 μm), 
B4 (Red, 0.64–0.67 μm), B5 (NIR, 0.85–0.88 μm), B6 
(SWIR1, 1.57–1.65 μm) and B7 (SWIR2, 2.11–2.29 
μm) were used in this study. Sixteen imagery textures of 
the two images were derived by the grey-level 
co-occurrence matrix (GLCM) with window size of 3 × 
3 pixels based on the first principal of the spectral bands 
(Lu et al., 2014). Based on the spectral band reflectivity 
of the remote sensed image in dry season, twelve salin-
ity indices and three spectral intensity indices were cal-
culated and extracted. Moreover, three vegetation indi-
ces were extracted from the remote sensed imagery in 
wet season. 

All environmental variables used to build soil salinity 
estimation model and their abbreviations, calculation 
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formula, and reference were summarized in Table 1. For 
variable selection, the importance of the environmental 
variables was estimated using Spearman correlation co-

efficient (r), which is commonly used to measure the 
linear association between variables. The r was calcu-
lated using the analysis tool in SPSS 21 software. 

 

Table 1  Environmental variables used to predict soil EC in this study 
Covariates sets Land surface parameters Abbreviations Formulations References 

Elevation DEM  www.usgs.gov 

Aspect AS  Conrad et al. (2015) 

Analytical hill shading AH  Conrad et al. (2015) 

Channel network base level CNBL  Conrad et al. (2015) 

Channel network distance CND  Conrad et al. (2015) 

Closed depression CD  Conrad et al. (2015) 

Convergence index CI  Conrad et al. (2015) 

LS factor LSF  Conrad et al. (2015) 

Relative slope position RSP  Conrad et al. (2015) 

Topographic wetness index TWI  Conrad et al. (2015) 

Terrain attributes 

Valley depth VD  Conrad et al. (2015) 

Distance to drainage channel DC  

Longitude LO  

Spatial location 

Latitude LA  

 

Meteorological 
factor 

Evapotranspiration ET  https://ladsweb.modaps.eosd
is.nasa.gov/ 

Soil matrix Content of silt and clay particle SC  Li et al. (2018) 

Landsat 8 spectral bands in 10th 
February, 2017 

B1_F; B2_F; B3_F; B4_F; 
B5_F; B6_F; B7_F; 

 https://www.usgs.gov/ 
Spectral reflectiv-
ity 

Landsat 8 spectral bands in 6th 
September, 2017 

B1_S; B2_S; B3_S; B4_S; 
B5_S; B6_S; B7_S; 

 https://www.usgs.gov/ 

Landsat 8 imagery texture in 10th 
February, 2017 

Mean_F, Contrast_F, Correla-
tion_F, Dissimilarity_F, En-
tropy_F, Homogeneity_F, Sec-
ond Moment_F, Variance_F; 

 Lu et al. (2014) 

Imagery texture 

Landsat 8 imagery texture in 6th 
September, 2017 

Mean_S, Contrast_S, Correla-
tion_S, Dissimilarity_S, En-
tropy_S, Homogeneity_S, Sec-
ond Moment_S, Variance_S 

 Lu et al. (2014) 

Salinity index 1 SI1 [B4_F×B3_F]0.5 Jiang et al. (2019) 

Salinity index 2 SI2 [B5_F2+B4_F2+B3_F2]0.5 Jiang et al. (2019) 

Salinity index 3 SI3 [B4_F2+B3_F2]0.5 Jiang et al. (2019) 

Salinity index 4 SI4 [B4_F×B2_F]0.5 Khan et al. (2005) 

Salinity index 5 SI5 B2_F/B4_F Abbas and Khan (2007) 

Salinity index 6 SI6 B6_F/B7_F Bannari et al. (2008) 

Salinity index 7 SI7 (B3_F×B4_F) / B2_F Abbas and Khan (2007) 

Salinity index 8 SI8 (B2_F-B4_F)/ (B2_F+B4_F) Abbas and Khan (2007) 

Salinity index 9 SI9 (B4_F×B5_F) / B3_F Abbas and Khan (2007) 

Salinity index 10 SI10 (B2_F×B4_F) / B3_F Abbas and Khan (2007) 

Normalized difference salinity 
index 

NDSI (B4_F-B5_F)/ (B4_F+B5_F) Bannari et al. (2008) 

Salinity index 

Salinity index ASTER ASTER-SI (B6_F-B7_F)/ (B6_F+B7_F) Bannari et al. (2008) 

Intensity within the visible range INT1 (B3_F+B4_F) / 2 Douaoui et al. (2006) 

Intensity within the VIS-NIR range INT2 (B3_F+B4_F+B5_F) / 2 Douaoui et al. (2006) 

Spectral intensity 

Brightness index BI [B4_F2+B5_F2]0.5 Douaoui et al. (2006) 

Normalized difference vegetation 
index 

NDVI (B5_S-B4_S)/ (B5_S+B4_S) Bouaziz et al. (2011) 

Soil adjusted vegetation index SAVI 
[(B5_S×B4_S) × (1+L1)] 

/ [B5_S+B4_S+L] 
Bouaziz et al. (2011) 

Vegetation index 

Enhanced vegetation index EVI 
2.5×(B5_S-B4_S) / (B5+c1

×B4_S-c2×B2_S+L2) 
Bouaziz et al. (2011) 

Notes: B1_F–B7_F represents the B1–B7 spectral band reflectivity of the Landsat 8 remote sensed image in February 10th, 2017; B4_S and B5_S represent the red and 
near-red band spectral reflectivity of the Landsat 8 remote sensed image in September 6th, 2017; L1, L2, C1, and C2 are constant equal to 1, 0.5, 6, 7.5, respectively. 
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2.4  Models and their accuracy comparison for soil 
salinity estimation   
In this study, MLR, GWR, and RFR were used to esti-
mate EC. MLR is a classical method widely used to pre-
dict dependent variable values from independent vari-
ables. In this study, MLR was realized in R statistics tool. 

The GWR model is an extension of the general linear 
regression model by introducing geographic positions of 
data into the regression parameters, which allows GWR 
to estimate the relationship between the response and 
the covariates locally rather than globally (Li et al., 
2012). In the GWR model, local regression coefficients 
at each location in the study area are derived based on 
weighted least squares regression, and the spatial extent 
used for modeling was determined by a given 
neighborhood or kernel function (Wu et al., 2016). The 
weight of a sample is a function of the bandwidth and 
the distance between the position of the estimated point 
and the observed point in geographic space. The 
neighborhood size is also determined by the bandwidth. 
Therefore, the bandwidth is critical for the estimation of 
regression parameters. Common methods used for se-
lecting bandwidth include cross-validation and the cor-
rected Akaike information criterion (AIC) (Lu et al., 
2018). In this study, a Gauss function was chosen as the 
spatial weighting function, and AIC was selected to op-
timize the kernel extent. All these procedures were im-
plemented using the spatial statistics tools of ArcGIS 
10.5 software. 

RFR is an enhancement of DT that generates each re-
gression tree by using a random vector sampled inde-
pendently from the input vector, making it an ensemble 
learning method (Immitzer et al., 2012). Both categori-
cal and continuous predictor variables or response vari-
ables are allowed in the model. In this research, the 
randomForest package in R statistics software was used 
to develop the RFR model (Breiman, 2001). Two pa-
rameters, namely ntree (the number of trees) and mtry  

(the number of input variables per node), have a critical 
impact on model performance. In order to optimize 
these two parameters, several combinations of ntree and 
mtry were tested, and the optimal parameters value were 
selected according to the lowest Root Mean Square Er-
ror (RMSE). Finally, the selected values of ntree and mtry 
in this study were 2000 and 16, respectively. A more 
detailed discussion of RFR can be found in (Breiman, 
2001). 

All 184 samples were sorted randomly into two parts 
using the Geo-statistics analysis tool in ArcGIS 10.5, 
which can guarantee the spatial consistence of training 
sets and validation sets. In the end, 75% samples were 
used for modeling, and the remaining samples were 
used for validation. The RMSE, Mean Absolute Error 
(MAE), coefficient of determination (R2) and Ratio of 
Prediction to Deviation (RPD) were selected to evaluate 
the accuracy of the constructed models. In general, 
lower RMSE and MAE signify better prediction results 
(Huang et al., 2019). The values of R2 and RPD higher 
than 0.91 and 2.5, respectively signify an accurate pre-
diction. A R2 value between 0.82 and 0.91, and RPD 
higher than 2 indicate a good prediction. If R2 is be-
tween 0.66–0.82 and RPD is higher than 1.5, the predic-
tion seems to be false. A R2 value between 0.5 and 0.66 
indicates a poor relationship (Farifteh et al., 2007). 

2.5  Soil salinization classification 
Due to the strong correlation between EC and SSC, a 
linear regression model was established with an R2 of 
0.99 (Fig. 2), which indicated that the model could be 
used to infer SSC from EC. Therefore, EC was used to 
classify the degree of soil salinization based on the Chi-
nese soil salinization standard (Zhang et al., 2009) and 
the relationship between EC and SSC. The grading 
standard is shown in Table 2, which is close to the clas-
sification criterion in the Hetao irrigation district near 
our study area (Yu et al., 2010). 

 
Table 2  Soil salinity classes and their effect on crops in the north of Yinchuan Plain irrigation district, 2017  

Salinity class Soil EC (dS/m) SSC (g/kg) Salinity impacts on crops 

Non-saline <0.3568 <1 Salinity impacts are negligible 

Slightly saline 0.3568–0.5963 1–2 Affect production slightly for very sensitive crops 

Moderately saline 0.5963–1.0753 2–4 Many crops are affected and the yield is restricted 

Highly saline 1.0753–2.5123 4–10 Only tolerant crops bear this condition 

Extremely saline ≥2.5123 ≥10 Only a few very tolerant crops resist 

Notes: EC, electrical conductivity; SSC, soil salt content 
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Fig. 2  The linear relationship between soil electrical conductiv-
ity (EC) and soil salt content (SSC) of the 19 samples with dif-
ferent salinity level in the study area in 2017 

 

3  Results 

3.1  Descriptive statistics 
Table 3 shows the descriptive statistics for soil EC of the 
training sites, validation sites and the whole sample set. 
According to variance analysis, there was no significant 
difference between the three datasets. All datasets pre-
sented medium spatial variation according to the stan-
dard of variability (Huang et al., 2019). Additionally, 
skewed distribution was observed for all datasets, while 
the Log-transformed soil EC showed approximately 
normal distribution. Therefore, the model was con-
structed based on the Log-transformed data, and then 
the estimated EC was obtained using the antilogarithmic 
function. 

3.2  Correlation between environmental variables 
and measured EC 
The correlation coefficients between environmental 
variables and measured EC value are shown in Table 4. 

Among all the environmental variables, CNBL had the 
largest absolute r value of 0.47, which was followed by 
DEM. Therefore, the terrain attributes have great poten-
tial for soil salinity estimation. From the perspective of 
imagery texture, there were no significant correlations 
between EC and image texture indices derived from the 
remote sensed imagery scanned in September except for 
the Mean_S index, while there were strong correlations 
between EC and imagery texture indices obtained from 
the imagery scanned in February. Therefore, imagery 
texture index derived from the imagery scanned in dry 
season was suggested for estimating soil salinity rather 
than the imagery scanned in wet season. In addition, the 
reflectivity of seven spectral bands from the two images 
had significant difference in correlation with soil EC. 
On one hand, the reflectivity of visible spectral bands 
from the imagery scanned in February was positively 
correlated with EC, while there was no significant cor-
relation between soil EC and the reflectivity of visible 
spectral bands from imagery scanned in September. On 
the other hand, for infrared wavelength bands, the rela-
tionship was contrary to the correlation in visible band. 
The results show that it would be better to use the bands 
in visible wavelength to reflect soil salinity in dry sea-
son while the infrared band would be more suitable in 
wet season. Notably, longitude and latitude were also 
significantly and positively correlated with soil EC, in-
dicating that EC increased from west to east and from 
south to north, which was consistent with the Yellow 
River flow direction and the local situation. Addition-
ally, consistent with previous studies, the content of silt 
and clay was significantly and positively correlated 
with soil EC. Interestingly, the ET was insignificantly 
and negatively correlated with soil EC, which is con-
trary with the known theory. This is likely due to scale 
conversion or because single-phase images are not 
representative. Similarly, the three vegetation indexes 

 
Table 3  Statistics of soil EC in training, validation and total datasets 

Raw data Log-transformed data 
Data sets Min Max Mean SD CV 

Skew Kurt P-value Skew Kurt P-value 

Training sites 0.09 13.49 1.07a 2.34 0.46 4.41 20.54 0.00 0.56 –0.15 0.08 

Validation sites 0.05 12.38 1.23a 2.12 0.58 3.39 12.29 0.00 1.18 1.57 0.41 

Total sample 0.05 13.49 1.19a 2.17 0.55 3.65 14.28 0.00 0.683 0.097 0.063 

Notes: Min, minimum; Max, maximum; SD, standard deviation; CV, coefficient of variation; Skew, Skewness; Kurt, Kurtosis; the letter ‘a’ above each Mean 
indicates insignificant difference among the treatments at the level of P < 0.05. 
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Table 4  Correlation coefficients between environmental variables and measured EC  

Factor r Factor r Factor r Factor r 

DEM –0.43** SI1 0.15* Mean_F 0.079 Mean_S 0.16* 

AS 0.10 SI2 0.13 Contras_F 0.24** Contrast_S 0.06 

AH 0.01 SI3 0.15* Correlation_F 0.09 Correlation_S –0.04 

CNBL –0.47** SI4 0.17* Dissimilarity_F 0.24** Dissimilarity_S 0.07 

CND –0.24** SI5 0.16* Entropy_F 0.26** Entropy_S 0.05 

CD 0.12 SI6 –0.13 Homogeneity_F –0.24** Homogeneity_S –0.06 

CI –0.06 SI7 0.12 Second Moment_F –0.26** Second Moment_S –0.03 

LSF –0.13 SI8 0.16* Variance_F 0.28** Variance_S 0.08 

RSP –0.22** SI9 0.03 B1_F 0.17* B1_S 0.00 

TWI 0.13 SI10 0.17* B2_F 0.18* B2_S 0.02 

VD –0.27** NDSI 0.22** B3_F 0.17* B3_S 0.04 

DC –0.32** ASTR_SI –0.13 B4_F 0.15* B4_S 0.03 

EVI –0.05 BI 0.11 B5_F 0.074 B5_S –0.07 

NDVI –0.04 INT1 0.15* B6_F –0.03 B6_S –0.23* 

SAVI –0.04 INT2 0.14 B7_F 0.01 B7_S –0.15* 

LO 0.20** LA 0.25** SC 0.31** ET –0.07 

Notes: ** Significant at the 0.01 probability level. * Significant at the 0.05 probability level. Meanings of all factors see Table 1 

 
calculated based on the remote sensed images scanned 
in September 2017 were not significantly correlated 
with soil EC. In short, out of 64 environmental vari-
ables, the correlations between 30 covariates and soil 
EC were significant with P < 0.05. Consequently, the 30 
environmental variables were used to construct models. 

3.3  Model construction and evaluation 
The multicollinity among variables affected the MLR 
and the GWR models. Therefore, variables with Vari-
ance Inflating Factor (VIF) greater than 5 were ex-
cluded. Finally, only SC, Variance_F, NDSI, VD, DC 
and LO were finally fitted into the MLR and GWR 
models. The established MLR and GWR models are 
shown in Equations (1) and (2). The coefficient distribu-
tion map of GWR model is shown in Fig. 3. All signifi-
cantly correlated variables were used to establish the 
RFR model, and the importance of environmental vari-
ables is shown in Fig. 4. 

SC NDSI VD

DC LO Variance_F

lg 40.33 33.33 85.34 1589

94400 2297000 686.4

EC X X X

X X X

    

  
 (1) 

0 SC SC NDSI NDSI VD VD

DC DC Variance_F Variance_F

lgEC X X X

X X

   
 

    

 
 (2) 

where βm is the local regression coefficient and m is the 
corresponding independent variable. In this study, the 

independent variables were SC, NDSI, VD, DC and 
Variance_F, respectively. 

The RMSE, MAE, R2 and RDP (Ratio of Prediction to 
Deviation) values of the three models for training data-
sets and validation datasets are shown in Table 5. In 
general, the prediction accuracy of RFR model was 
higher than that of GWR model and the prediction ac-
curacy of the latter was higher than that of MLR model. 
However, regarding the R2 and RDP values of the vali-
dation samples, the prediction results were unreliable 
irrespective of the model, although the fitting effect of 
the predicted value and the measured value of the RFR 
model was slightly better than that of the other two 
models. In addition, by comparing the R2 and RDP of 
the RFR model in the training datasets and the valida-
tion datasets, it was found that the RFR model had over-
fitting effect. 

3.4  Soil salinity maps derived from constructed 
model 
The soil salinity maps obtained by MLR, GWR, and 
RFR models are shown in Fig. 5. The spatial distribu-
tion pattern of different levels of saline soil predicted by 
MLR and GWR was consistent, with a gradually in-
creasing trend from south to north. The highly saline 
soil and extremely saline soil predicted by the three 
models were all distributed in the west-central part of  
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Fig. 3  Map of local regression coefficient and intercept of the geographical weighted regression model. (a) the intercept; (b) the local 
regression coefficient of the content of sand and clay (SC); (c) the local regression coefficient of the normalized difference salinity index 
(NDSI); (d) the local regression coefficient of the Valley depth (VD); (e) the local regression coefficient of the Distance to drainage 
(DC); (f) the local regression coefficient of the Variance_F 
 

the study area, but the predicted areas by different 
models were different. According to the field investiga-
tion, the low terrain and high clay content in this local 
area restricted soil salt drainage. 

Table 6 reflects the area proportion of different 
grades saline soil predicted by the above models and 
the proportion of soil samples with different levels of 
salinity. As can be seen from Table 6 and Fig. 5, the 
smoothing effect of the RFR model was obvious, which 
was mainly manifested as the underestimation of highly 
saline soil and extremely saline soil as well as the 
overestimation of non-saline soil. The area ratio of 
highly and extremely saline soil predicted by the GWR 
model was consistent with that of the highly saline soil 
and extremely saline soil sample points. This may be 
related to the concentrated distribution of highly or ex-
tremely saline soils, which were easily accumulated in 
low-lying and poorly drained areas. Thus, the local re-
gression model used by the GWR can extract effective 

information in this local area. MLR model also had 
certain smoothing effect, but it was better than RFR 
model. 

4  Discussion 

4.1  Effects of band spectral reflectivity on the 
correlation between soil EC and salinity indices 
In this study, NDSI had the highest value of correlation 
coefficient with soil EC among the 12 salinity indices, 
indicating that it played an important role in soil salin-
ity mapping. Similarly, the results of Khan et al. (2005) 
also indicated that NDSI had great potential to estimate 
EC in dry season. Moreover, among the salinity indices 
calculated by the visible spectral bands reflectance 
(SI1, SI2, SI3, SI4, SI5, SI7, SI8, SI9, and SI10), SI1 
and SI3 were significantly correlated with EC, which 
confirmed that SI1–SI3 indices proposed by the Indo 
Dutch Network Project were suitable to assess salinity  
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Fig. 4  Importance of environmental variables used in the random forest regression (RFR) model. Each variable was scaled to sum to 
100% 
 
Table 5  Prediction accuracy comparison of three models 

MLR GWR RFR 
Data sets 

RMSE MAE R2 RDP RMSE MAE R2 RDP RMSE MAE R2 RDP 

Training sites 0.43 0.35 0.34 0.95 0.41 0.34 0.37 0.99 0.17 0.13 0.93 2.83 

Validation sites 0.42 0.33 0.24 1.10 0.41 0.32 0.26 1.11 0.35 0.28 0.45 1.25 

 
conditions based on Landsat-TM data (Bouaziz et al., 
2011). Furthermore, the significant correlation coeffi-
cient of SI4, SI5, and SI8 indicated that blue and red 
bands had good potential to estimate soil salinity. Simi-
lar to the findings of this study, Fan et al. (2015) found 
that blue and NIR bands from the Advanced Land Im-
agery were positively correlated with soil salinity. Un-
fortunately, SI7 and SI9, which were critical factors for 
predicting EC in other studies, were not significantly 
correlated with EC in our study area (Abbas and Khan, 
2007; Peng et al., 2019). In addition, except for NDSI, 
the correlation coefficients were all less than 0.2 (Table 
2). This may be related to the large scope of the study 
area and complex ground conditions. In practice, some 
soil samples were taken from farmland including dry 

land and paddy fields, while other samples were taken 
from fallow land and grassland in this study. In addition, 
some studies indicated that the salinity indices calcu-
lated by the SWIR1 and SWIR2 band reflectance, such 
as ASTER-SI, had a strong correlation with soil EC 
(Bannari et al., 2008). However, ASTER-SI were not 
significantly correlated with soil EC in this study. This 
was likely because these salinity indices were calculated 
based on the imagery scanned in February. In the remote 
sensed imagery scanned in February, soil EC was posi-
tively and significantly correlated with the spectral band 
reflectivity in visible wavelength while it was not sig-
nificantly correlated with bands reflectance in infrared 
wavelength (Table 2). In contrast, considering the im-
agery scanned in September, the reflectivity of the 
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Fig. 5  Soil salinity maps predicted by (a) multiple linear regression model, (b) geographical weighted regression model, and (c) ran-
dom forest regression model in the north of Yinchuan Plain irrigation district  
 
Table 6  Proportion of estimated area and sampled points for different level of saline soil in the north of Yinchuan Plain irrigation dis-
trict (%) 

Method Non-saline Slightly saline Moderately saline Highly saline Extremely saline 

MLR 31.27 25.76 27.30 10.75 4.92 

GWR 28.85 26.99 22.96 11.95 9.85 

RFR 34.51 36.72 19.32 7.31 2.14 

Sampled point 42.93 17.93 15.76 14.67 8.70 

 
infrared band was significantly correlated with soil EC, 
while the reflectivity of the visible band was not sig-
nificantly correlated. Peng et al. (2019) predicted soil 
EC using Landsat 8 imagery that was scanned in July 
2016, and found that ASTER-SI and SI6 were signifi-
cantly correlated with soil EC. Therefore, considering 
the significant differences in the correlation coefficient 
between spectral band reflectance and soil EC in dry 
season and wet season, this study concluded that the 
infrared band was applicable for the prediction of soil 
salinity in plant growing season, while the visible band 
reflectance was more applicable in dry season. 

4.2  Performance of imagery texture, terrain at-
tributes, and spatial location in soil EC prediction 
Among the imagery texture indices, Variance_F had the 
largest correlation coefficient with soil EC and it was 

also an important independent variable in the three 
models. In general, the cells with high value of Vari-
ance_F are mainly distributed in the junction of different 
landscape types, like farmland and village land. More-
over, Variance_F gradually decreases as the distance 
between farmland and other landscape increases. In fact, 
the soil EC value also decreased as the distance to vil-
lage or ditch or some land without irrigation increased. 
This phenomenon was consistent with the positive cor-
relation coefficient between the Variance_F index and 
soil EC (Table 4). In essence, this may be because the 
water flowed from the irrigated area (farmland) to the 
non-irrigated area and brought salt at the same time, 
which made the non-irrigated area more salinized. 
(Konukcu et al., 2006; Gill et al., 2016). Therefore, the 
direct reason for the significant correlations between 
soil salinity and imagery texture attributes may be the 
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landscape variety, and the indirect reason may be the 
difference in salt accumulation in different landscapes.  

Among the terrain attributes, CNBL was the most 
important environmental variable for the RFR model 
and both VD and DC were critical independent variables 
in the three models, indicating that terrain characteristics 
played a vital role in soil salinity estimation. In addition, 
DEM, CNBL, CND, RSP, and VD were significantly 
and negatively correlated with EC in this study, which 
was consistent with the research results of Peng et al. 
(2019). In essence, these indicators reflect the height 
and slope of the terrain and they affect the direction and 
rate of water flow. Generally, low terrain and small 
slope result in salt accumulation. Furthermore, consis-
tent with previous conclusions, DC was negatively cor-
related with EC. In other words, soil salinization was 
more severe with less distance to the drainage ditch 
(Zhou et al., 2012). Therefore, topography attributes 
should be considered to predict soil salinity. 

4.3  Model performance on soil salinity estimation 
Similar to a precious study, the performance of GWR 
model was slightly better than that of MLR model in 
this study (Wu et al., 2016). However, both models had 
small values of R2. This may be related to the large 
scope of the study area and the complex surface land-
scape type. For instance, Shrestha et al. (2006) used the 
covariates extracted from Landsat 7 to predict soil EC 
and found that the R2 of MLR was 0.23. In another 
study, Allbed et al. (2014) used OLI images to predict 
EC in an area of about 20,000 ha and found that the R2 
of MLR was greater than 0.65. Another possible reason 
may be the scale difference between the ground sam-
pling point and the Landsat 8 image pixel. For example, 
the reason for high R2 (more than 0.7) values in some 
studies was that they built models between apparent 
conductivity, obtained by electromagnetic induction, 
and variables derived from remote sensing imagery 
(Whitney, et al., 2018). Therefore, for soil salinity map-
ping in large scale, the complexity of surface landscape 
types should be taken into account, followed by the 
scale difference between sampling point and the spatial 
resolution of remote sensed imagery. 

Unexpectedly, it was contrary to the conclusion that 
the prediction accuracy of RFR model is much higher 
than that of linear regression model (Lu et al., 2018; 
Wang et al., 2018a). In this study, the prediction accu-

racy of RFR model for validation datasets was only 
slightly higher than that of the GWR and MLR models. 
In addition, there was severe over-fit effect considering 
the model performance in training dataset and validation 
dataset. This may be due to the uneven distribution of 
samples in different salinization levels in this study. In 
practice, the proportion of non-salinized sample was 
42.93%, while that of extremely salinized samples was 
8.7%. On the other hand, RFR model adopts the voting 
scheme to determine the prediction value based on the 
results of different decision trees (Wang et al., 2018b). 
Therefore, the prediction results could be easily made 
smaller when the non-saline soil samples accounted for 
a large proportion. In conclusion, the sampling scheme 
can have a great impact on the model performance. 

5  Conclusions 

In this study, 64 environmental variables related to the 
formation of saline soil (e.g., terrain, soil matrix and 
climate) and the apparent spectral characteristics of sa-
line land were summarized to estimate the soil EC. Then 
the applicability of the 64 indices were evaluated 
through the correlation coefficient and the prediction 
accuracies of RFR, MLR and GWR models were com-
pared. The main conclusions of this study are as follows. 
1) the remote sensed imagery scanned in dry season was 
more suitable for soil EC estimation. Among the 15 im-
agery texture and spectral band reflectivity factors ex-
tracted from Landsat 8 image in dry season, 10 indices 
were significantly correlated with soil EC. however, 
only 3 of these indices extracted from Landsat 8 image 
in wet season have significant correlation with soil EC. 
2) Channel network base level, one of the terrain attrib-
utes, had the largest absolute correlation value of 0.47 
and all spatial location factors had significant correla-
tion with soil EC. However, ET extracted from sin-
gle-phase MODIS images was negatively correlated 
with EC and vegetation indices were not significantly 
correlated with soil EC. 3) The comparative results 
showed that the prediction accuracy of the RFR model 
was slightly higher than that of the GWR model, and 
prediction accuracy of the latter was superior to that of 
the MLR model. However, based on the low RDP val-
ues of the validated dataset, the predictions of all three 
models appeared to be unreliable. This study provides 
reference for the environmental variable selection and 
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model construction of soil salinization prediction in an 
arid or semi-arid oasis. In future studies, prediction ac-
curacy could be improved by taking the complex land-
scape into consideration. 
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