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Intelligent Recognition of Corn Residue Cover Area by Time-Series
Sentinel-2A Images
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Abstract Crop residue covering is an important way to reduce soil erosion and increase soil organic carbon, which is very
important for black soil protection. Therefore, the accurate and rapid identification of corn residue cover area plays an important
role in local government monitoring and promoting conservation tillage. The study area is located in Siping City, Jilin Province.
Moreover, the time-series Sentinel-2A images collected from GEE (Google Earth Engine) cloud platform are used to capture
spectral index based on the characteristics of the corn growing season and after harvest. Index features include Normalized
Difference Vegetation Index (NDVI) and Normalized Difference Residue Index (NDRD. The time series feature values are sorted
by size, and the quantile method is used to select quartile (QT) features at 0%, 25%, 50%, 75%, and 100% to construct
datasets. On this basis, the random forest method after parameter optimization is applied to train and verify the sample datasets
divided according to 7 ¢ 3, and then the datasets are classified, combined with the connected domain calibration method to remove
the small connected domains generated in the classification process, and further optimize the global result. Through the
quantitative and qualitative evaluation of Kappa and Overall Accuracy (OA), the experimental results show that: (1) The
quantitative evaluation results of the classification model (M1/M2/M3/M4/M5) based on the dataset composed of the different
feature are superior 90%. Among them, the classification model M5 of the dataset designed in this paper has the best
performance, of which Kappa and OA are 97. 41% and 97. 91%, respectively. Compared with the classification model M2
without the QT feature, the Kappa and OA are increased by 4. 52% and 3. 64%, respectively. At the same time, the M5
recognition result can effectively retain edge detail information; (2) For QT feature of different time scales, using the QT feature
classification model M5 6/M5 of time series remote sensing images {rom May to November can greatly restrain another crop
residue. Compared with the Kappa and OA of the M5 1 model classification result using only the QT features of the time series
images in November, the Kappa and OA increased by 3. 9% and 3. 12% , respectively; (3) Based on the M5 model, the Kappa
and OA of the classification model M6 combined with the connected domain calibration method are 96. 76 % and 97. 36 %,
respectively, second only to the recognition results of the M5 model. The model M6 avoids fine-grained patches while ensuring
high accuracy and optimizing the classification visualization effect. Therefore, the M6 model proposed in this paper is suitable for
identifying areas covered by corn residue in the study area. This method can be quickly implemented in the GEE cloud platform

environment and is suitable for popularization and application in a corn residue covered areas in Northeast China.
Keywords Crop residue cover area; GEE cloud platform; Time series Sentinel-2A image; Random forest; Connected domain
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