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Abstract: Mastering the spatial distribution of water retention capacity and scientifically delineating
the ecological space for water conservation are of great significance to the management of regional
land and water resources. In this paper, a water conservation ecological spatial delimitation frame-
work suitable for water-deficient areas was put forward. The water retention capacity of the study
area in 1983, 1990, 2000, 2010, and 2016 was evaluated by using the InVEST Water Yield model
and water balance method, respectively. On this basis, a flexible inflection point model based on
the contribution degree of functional units was established. Then the ecological space for water
conservation was delimited. The framework was applied to the delimitation of the key water conser-
vation areas in Jilin province, China. The results showed that: (1) the spatial distribution pattern of
water conservation in Jilin province gradually decreased from east to west. The spatial difference
was significant. The maximum value of water conservation in Jilin province was 730 mm. From
1983 to 2016, water conservation, which accounted for 75.71% of the area, showed an upward trend.
The overall water retention capacity showed the characteristics of the overall increase and the local
decline. (2) From the absolute amount of the effect of unit area change on water conservation, the
intensity from the high to the low was forestland, cultivated land, grassland, unused land, buildings,
and water. (3) The area of water conservation less than 474 mm accounted for more than 80% of the
total study area. The overall water retention capacity was low. High importance ecological space
area of water conservation was comprehensively defined as 36.97%, which was mainly distributed in
the natural forest area of Changbai Mountain in the east and the south of Song Liao Plain. Therefore,
this study provided a basic layout of relatively concentrated ecological spatial distribution for water
conservation types at different levels in Jilin province. The study results and conclusions of this
paper will provide a reference for water conservation assessment and the regional land’s natural
resources management.

Keywords: water conservation evaluation; water balance method; flexible inflection point model;
ecological space delimitation; Jilin province; China

1. Introduction

In recent decades, with the rapid development of urbanization and industrialization,
human activities have had a serious impact on the regional and global ecological environ-
ment [1–5]. The decline of ecological services and the reduction of ecological space directly
affect the sustainable development of the region and the survival of human beings. At the
same time, the demand for high-quality ecological space is also increasing [6–9]. Ecological
space is defined as land space with natural attributes and is the main function of improving
ecological services, and it is divided into two land types: important ecological function
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land and ecologically sensitive land [10–13]. For all kinds of ecological function space
systems, water conservation function land is an important part of the ecological space and
the functional embodiment of the interaction of vegetation, water, and soil [14–16].

Water resources are a kind of basic natural and strategic economic resource. With the
increase in global demand and the shortage of water resources caused by the deterioration
of the water environment, the water retention capacity of regional ecosystems is seriously
threatened [17,18]. As an important way for ecosystems to participate in the process of
hydrological regulation, water conservation refers to the process and capacity of ecosystems
to store and retain water in a specific time and space [19], the ecological base flow of
drainage and recharge basin in non-rainy seasons, in order to ensure the water for human
life and social development [20]. Regional water retention capacity is related to all aspects
of vegetation, species survival, and social life [16,21–23]. Therefore, it is necessary to
explore the delimitation of ecological space for water conservation under the guidance of
water resources management so as to alleviate the contradictions among water use, water
environment, water ecology, and resource development.

The amount of water resources per capita in Jilin province is 1269 m3, which is only 2/3
of the national level and 1/5 of the world average level. Thus, Jilin province belongs to the
area of moderate water shortage [24,25]. As an important grain-producing area in China,
Jilin province is facing great pressure on water resources due to the rapid development
of regional agriculture in recent years [12,26]. In the process of economic development,
the exploitation of cultivated land reserve resources will inevitably lead to the continuous
destruction of the regional ecosystem water conservation services. At the same time, as
the headstream of Songhua River, Yalu River, Tumen River, etc., water resources security
is very important to maintain the water security of Jilin province and even the whole
northeast region [27–30]. Therefore, there is an urgent need for quantitative evaluation and
spatial-temporal heterogeneity of water conservation services in Jilin province. Further
improving the technical system for spatial delimitation of important ecological functions
will be conducive to improving the understanding of regional water retention capacity [31].

A series of studies on the evaluation of water conservation functions have been
carried out. The InVEST Water Yield model was based on simplifications of well-known
hydrological relationships in natural ecosystems, which was essential for water-related
ecosystem services [32,33]. The annual water yield of 22 catchment areas in England was
simulated and verified by long-term river flow data [34]. Xu Yang [35] analyzed the spatial-
temporal dynamics of water yield in arid areas of northwest China from 1985 to 2015, as
well as the response of water yield to land use and precipitation (P) changes. The water
balance method is a relatively mature and accurate method [36–40], which has been widely
used in the evaluation of regional water conservation services. Therefore, the regional
water retention capacity is scientifically evaluated by using the combination of the InVEST
Water Yield model and the water balance method.

From the current practical works, the water balance method was scientific and accurate
in the calculation of the spatial functional value [29,41,42]. However, there were still some
deficiencies in the follow-up processing methods. In the study of Xiangjiang River Basin,
there was an obvious deficiency in using the fixed threshold method to delineate the
ecological red line [43], while in the planning of green infrastructure in Germany [44], the
ecological space was obtained based on only the order of the importance of services; the
relative differences of functional contribution values of different regional evaluation units
were ignored. In addition, on the national and inter-provincial scale, it was difficult to
accurately express the important eco-spatial functions of areas with obvious differences
in water resources endowment, to form standards, and to popularize them on a large
scale [45–48]. Generally speaking, there was still a lack of an accurate methodological
framework for the delineation of ecological space, and relevant cases were still rarely
studied [49,50].

This paper put forward a methodological framework for the delimitation of ecological
space for water conservation on a regional scale. Jilin province, China, was taken as the
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study area. The water balance method was used to analyze the spatial maps of water
conservation in 1983, 1990, 2000, 2010, and 2016. Then, the flexible inflection point method
of the cumulative contribution value of the evaluation unit was used to improve the
delineation method of important water conservation levels, and an important ecological
space range was formed. Finally, the factors affecting the delimitation of ecological space for
water conservation and the correction scheme were further discussed. The research results
of this paper can provide theoretical support for the future study of regional ecosystem
water conservation and the application of regional land resources management.

2. Materials and Methods
2.1. Study Area

Jilin province (Figure 1) is located in the middle of northeast China, with a land area
of 1.874 × 105 km2, with four distinct seasons, where rain and heat coexist. The average
annual P is 400 mm–600 mm. The average annual evapotranspiration(ET) is between
1100 mm and 1900 mm [51]. The topography is tilted from southeast to northwest, which
is divided into eastern mountain area, central hilly region, and central and western plain
area [28,29]. Changbai Mountain in the east is rich in natural forest resources and is a
key protected area of natural forest resources in northeast China. The central part is an
important commercial grain base. The western part is located in the typical ecotone of
agriculture and animal husbandry, with serious wind, sand, drought, and salinization, so
it is the key area of national desert prevention and three northern shelterbelts [52]. Jilin
province is located in the upper and middle reaches of major rivers in northeast China. The
volcanic cone around Tianchi in Changbai Mountain is the headstream of Songhua River,
Yalu River, and Tumen River [31].

Figure 1. The map of study area depicts the location of Jilin province and presents the elevation information.

2.2. Data Source and Processing

Land use layers with a spatial resolution of 30 m were downloaded from Resources
and Environment data Cloud platform of Chinese Academy of Sciences. Climate data
contained the average annual P data and actual ET data. Soil data were from Center for
Soil Science, and annual runoff data quoted the statistical data in the literature [53]. The
details are shown in Table 1.
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Table 1. The datasets used for simulating the change of water conservation.

Data Description Data Source

Land use

Land use/cover data with
a spatial resolution of

30 m in 1983, 1990, 2000,
2010, and 2016

Resources and Environment data
cloud platform of Chinese Academy
of Sciences (http://www.resdc.cn/

accessed on 21 October 2019)

Average annual P

Monthly P data set in
China from 1901 to 2017,

with a resolution of about
1 km

National Earth System Science Data
Center, National Science &

Technology Infrastructure of China
(http://www.geodata.cn accessed on

4 January 2021)

Annual average ET Monthly actual ET data set
in China from 1982 to 2017

Terrestrial evapotranspiration dataset
across China (1982–2017), National

Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/zh-hans/

accessed on 9 January 2021)

Soil data Soil texture (clay%, sand%,
loam%), soil depth

Institute of Soil Science, Chinese
Academy of Sciences

(http://english.issas.cas.cn/ accessed
on 10 November 2020)

Annual runoff Annual runoff of Jilin
province from 1982 to 2000 Statistical data in the paper [53]

Land use data were visually interpreted and mapped by using Landsat images of
different periods, and the overall accuracy was more than 90% [54]. According to the
land use classification system [54], there were six categories of cultivated land, forestland,
grassland, water, buildings, and unused land (Figure 2). In order to balance the efficiency
of land use modeling and the richness of remote sensing image information, 100 m× 100 m
resampling of land use data was carried out by using the nearest neighbor method.

Figure 2. The land use maps of Jilin province in (a) 1983, (b) 1990, (c) 2000, (d) 2010, and (e) 2016, reclassified into
six categories.

http://www.resdc.cn/
http://www.geodata.cn
https://data.tpdc.ac.cn/zh-hans/
http://english.issas.cas.cn/
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According to the requirements of the InVEST model and the availability of data, this
paper made an empirical study in 1983, 1990, 2000, 2010, and 2016. In order to balance
the interannual variation of P and actual ET, this paper used the average annual data of
1982–1984, 1989–1991, 1999–2001, 2009–2011, and 2015–2017 as the representative data of
typical years (Figure 3).

Figure 3. The spatial-temporal distribution characteristics of the P data in Jilin province in (a) 1983, (b) 1990, (c) 2000,
(d) 2010, and (e) 2016.

2.3. Research Methods
2.3.1. Methodological Framework

The methodological framework for delineation of the ecological space for water
conservation is shown in Figure 4. (1) The InVEST Water Yield model was used to simulate
the spatial distribution of water yield in 1983, 1990, 2000, 2010, and 2016. The calculation
results were verified by using the annual runoff statistical data of Jilin province. (2) On
the basis of water yield simulation, the water retention capacity from 1983 to 2016 was
estimated by the water balance method. (3) The flexible inflection point method was used
to find the inflection point, and the ecological space of important water conservation from
1983 to 2016 was selected at the same time; (4) the ecological space of important water
conservation was finally delimited.
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Figure 4. The methodological framework of ecological space delimitation.

2.3.2. Calculation of Regional Water Yield Based on the InVEST Model

Water yield refers to the water outflow from the regional land use, which is the sum of
water yield in sub-basins calculated according to the principle of water balance [34]. Y(x)
was the annual water yield per pixel under different land use patterns, and its calculation
formula was as follows:

Y(x) =
(

1 − AET(x)
P(x)

)
× P(x) (1)

AET(x) is the annual actual ET; P(x) is the annual P.
For vegetation cover areas, the ET of water balance was calculated by AET(x)

P(x) formula
as follows:

AET(x)
P(x)

= 1 +
PET(x)

P(x)
−

[
1 +

PET(x)
P(x)

w]1/w

(2)

w(x) = Z
AWC(x)

P(x)
+ 1.25 (3)

PET(x) is the potential ET. w(x) is a non-physical linear fitting parameter, which was
used to characterize the surface characteristics of the watershed.

Where AWC(x) is the volumetric (mm) plant-available water content; the soil texture
and effective rooting depth defined AWC(x), which is used to indicate the total water in
the soil that can be used by plants for growth. It is estimated as the product of the plant
available water capacity (PAWC) and the minimum of root restricting layer depth and
vegetation rooting depth:

AWC(x) = Min(MaxSoilDepth, RootDepth)× PAWC (4)

Root restricting layer depth is the soil depth at which root penetration is inhibited
because of physical or chemical characteristics. Vegetation rooting depth is often given
as the depth at which 95% of a vegetation type’s root biomass occurs. PAWC is the plant
available water capacity, i.e., the difference between field capacity and wilting point.
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According to the soil texture, PAWC was calculated by Wenzuo Zhou’s empirical
formula [28]:

PAWC = 54.509 − 0.132sand − 0.003(sand)2 − 0.055silt − 0.006(silt)2 − 0.738clay
+0.007(clay)2 − 2.688OM + 0.501(OM)2 (5)

where sand is the proportion of soil sand content (%); silt is the proportion of soil silt content
(%); clay is the proportion of soil clay content (%); OM is the proportion of soil organic
matter content (%).

Z is a parameter indicating P distribution and P, with a value between 1 and 30 [55].
In order to ensure the rationality of the results, the Water Yield model was validated
according to the annual runoff data of 1983, 1990, and 2000 (3.8 × 1010 m3, 4.02 × 1010 m3,
3.2 × 1010 m3) of Jilin province [53]. When the value of Z was 18.3, the relative error
between the simulation results and the actual annual runoff data was controlled within
5%, and the simulation results were 3.75 × 1010 m3, 4.21 × 1010 m3, 3.17 × 1010 m3, respec-
tively. Therefore, Z was set at 18.3 in this paper. The water yield in 2010 and 2016 was
4.16 × 1010m3, 4.55 × 1010m3, respectively.

2.3.3. Water Conservation Calculation

In the InVEST model, the interception of P by vegetation and litter is returned to the
atmosphere through ET, which makes little contribution to water conservation. This paper
mainly considered the water retention capacity of the soil layer of the ecosystem [55]. The
formula for calculating water retention capacity was as follows:

WRx = Yx − Runo f fx (6)

Runo f fx = Px × Cj (7)

In the formula, WRx is the annual water retention capacity; Yx is the annual water
yield; Runo f fx is the annual surface runoff; Px was the annual P; Cj is the surface runoff
coefficient of the land use type j.

The runoff coefficient comprehensively reflected the influence of natural geographical
factors such as catchment topography, watershed characteristic factors, average slope,
surface vegetation, and soil characteristics [56,57]. The smaller the runoff coefficient was,
the easier the rainfall was absorbed by the soil. According to the relevant provisions of
‘Technical Guide for Red Line demarcation of Ecological Protection’ and ‘Code for Design of Building
Water supply and drainage (GB50015-2009)’, combined with relevant studies in northeast
China [58,59], the surface runoff coefficient was set as Table 2.

Table 2. The surface runoff coefficient’s value of different land types.

Land Number Land Use Name Surface Runoff Coefficient’s Value

1 Cultivated land 0.05
2 Forestland 0.0229
3 Grassland 0.082
4 Water 0
5 Building 0.5
6 Unused land 0.2

2.3.4. The Delineation Method of Important Ecological Space

The water conservation amount was the key index to evaluate the importance of water
conservation [60]. In this paper, the functional value of water conservation was evaluated
as follows:

(1) By establishing the flexible relationship between the accumulative area of the bench-
mark units and the cumulative water conservation, the units were selected from the
units with the largest water conservation value, and the sum of functional value was
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calculated. On this basis, the flexible relation model between cumulative units’ area
and water conservation was established.

(2) With the increase of units’ area, the cumulative value of water conservation increased
synchronously. When the function value of each increasing unit was less than or equal
to the increment of the function value of 1 unit, the elasticity of the functional area
decreased. The conversion point was the inflection point. The units larger than the
inflection point were the target range of the important water conservation space. As
shown in Figure 5, all the units to the left of the inflection point could be selected as
targets for important water conservation space. In other words, for every increase
of 1 unit in the area of water conservation, the increment of water conservation was
more than 1 unit.

(3) The screening results in 1983, 1990, 2000, 2010, and 2016 were analyzed. The high-
importance ecological space of Jilin province was obtained through intersect tool of
ArcGIS, the medium importance ecological space was obtained through merge tool of
ArcGIS, and the other areas were ecological space of low importance.

Figure 5. The schematic diagram of cumulative function and cumulative area, and the left units of
the inflection point were the important water conservation space target units.

Finally, combined with the national nature reserve functional zoning data, provin-
cial nature reserve zoning data, and other land use planning, the results were modified
and adjusted.

3. Results and Analysis
3.1. Estimation of Water Conservation in 1983–2016

The amount of water conservation in Jilin province from 1983 to 2016 showed a spatial
distribution pattern gradually decreasing from east to west. The natural forest area in the
east of Changbai Mountain has a strong function of water conservation. In the middle
of Songliao Plain, long-term agricultural activities have destroyed natural vegetation.
The west was in the ecotone of agriculture and animal husbandry, and the ecological
environment was fragile.

As shown in Figure 6, the area of each category was the same under the quantile
principle. Based on this analysis of spatial distribution, most of the water conservation in
Jilin province was less than 301 mm, accounting for more than 80% of the whole region.
The maximum value of water conservation in Jilin province was 730 mm, which occurred in
the Changbai Mountain area, and the minimum value was the water with 0 mm. In terms
of the total amount, the total water conservation in 1983, 1990, 2000, 2010, and 2016 was
2.31× 1010 m3, 2.59× 1010 m3, 2.06× 1010 m3, 2.69× 1010 m3, and 2.91× 1010 m3, respectively.
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Figure 6. The water conservation spital-temporal distribution pattern of Jilin province in (a) 1983, (b) 1990, (c) 2000, (d) 2010,
and (e) 2016.

From the changes in land use and water conservation in Jilin province from 1983
to 2016 (Figure 7), except for the great drought in Jilin province in 2000, the correlation
coefficients between water conservation and various land-use types were positive. From
1983 to 2016, the cultivated land and buildings area of Jilin province increased, the con-
servation capacity also increased, while the grassland and water area decreased, and the
conservation amount decreased correspondingly. Among them, the area of cultivated land
increased by 7.71%, the amount of water conservation increased by 34.99× 108 m3; the area
of grassland decreased by 45.6%, and the corresponding amount of water conservation
decreased by 1.12 × 108 m3.

Figure 7. Cont.
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Figure 7. The change trends of water retention capacity of (a) cultivated land, (b) forestland, (c) grassland, (d) unused land,
(e) water, and (f) buildings from 1983 to 2016.

Although there was a positive correlation between land area and water conservation,
the change of land area only reflected the change in water conservation.

According to the influence of unit area change on water conservation, the order of
intensity was forestland, cultivated land, grassland, unused land, buildings, and water area.
Among them, the forestland area most affected by water conservation decreased by 1 km2,
and the loss range of water retention capacity was 171,782–204,960 m3. Water was least
affected by water conservation, and the water retention capacity was almost zero. Except
for the drought in Jilin province in 2000, the water retention capacity of cultivated land and
forestland per unit area increased significantly (Table 3). Since the 1980s, the government
has always attached great importance to the protection of the natural environment. The
construction of artificial forests and grassland shelterbelts has improved the ecological
environment in the central and western regions. The quality of eco-environmental and the
ability of ecological security have been significantly improved.

Table 3. The water conservation per unit area for different land types (unit: m3/km2).

Year Cultivated
Land Forestland Grassland Water Buildings Unused

Land

1983 119,059 171,782 14,542 2 0 8241
1990 130,870 197,141 15,083 3 0 11,197
2000 90,012 165,729 6212 2 0 3106
2010 129,803 203,501 8547 2 118 8752
2016 156,444 204,960 10,129 4 1145 12,477
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3.2. Analysis of the Water Conservation Change from 1983 to 2016

Based on the spatial change analysis of water conservation in each period (Figure 8),
the overall trend of water conservation showed an upward trend from 1983 to 1990. The
increased area was 36.54% more than the reduced area. In contrast, overall water conser-
vation decreased significantly from 1990 to 2000. A total of 66.27% of water conservation
decreased by 15–30% compared with the previous period, mainly due to the reduction of P
caused by drought in Jilin province in 2000. Major changes had taken place in 2000–2010
and 2010–2016; except for a few areas, the growth rate of water conservation was 77% and
71.59%, with increases of 47% and 32.98%, respectively.

Figure 8. Spatial change and change rate of water conservation distribution in Jilin province in (a) 1983–1990, (b) 1990–2000,
(c) 2000–2010, (d) 2010–2018.

Overall (Figure 9a), from 1983 to 2016, water conservation showed a steady increasing
trend, in which 94.04% in the areas had a change rate of 0–5%, the change was relatively
stable. Among them, 75.71% of the total area showed an upward trend, and 18.33% showed
a downward trend. The most obvious fluctuations were in the river beaches and around
buildings in central Jilin province, where the rate of water conservation decline was more
than 15%. Therefore, Jilin province should pay attention to the regulation of water system
structure, rational utilization, and protection of water resources.

Figure 9. (a) Total spatial change and change rate of water conservation from 1983 to 2016; (b) the total amount of P, actual
ET, and change trends of Jilin province in 1983, 1990, 2000, 2010, and 2016.
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In addition (Figure 9b), except for the influence of land-use types, P and actual ET
had a great influence on the total amount of water conservation [61]. The changes trend of
water conservation from 1983 to 2016 was similar to the P. There was a positive correlation
between water conservation and P.

3.3. Delineation of Important Space for Water Conservation

The study area was divided into 189,339 evaluation units with an area of 1 km × 1 km.
The tangent inflection point of the 45-degree slope of the curve was used as the division
point (Figure 5). All the units in which the spatial functional value increased with the
area and the marginal elasticity was greater than 1 were selected to delimit the ecological
space of important water conservation in Jilin province from 1983 to 2016. As shown in
Figure 10, the ecological space of important water conservation had an obvious law of
spatial differentiation, in which the water retention capacity in the eastern mountain area
was the strongest and that in the western wind–sand fragile area was weak.

Figure 10. The important water conservation spaces of Jilin province in (a) 1983, (b) 1990, (c) 2000, (d) 2010, and (e) 2016, respectively.

The value of the flexible inflection point is shown in Table 4. According to statistics, the
area of important water conservation space accounted for 44.05%, 52.59%, 56.54%, 39.04%,
and 56.66% of the evaluation area in 1983, 1990, 2000, 2010, and 2016, respectively. The
water conservation ratio of these important spaces was 63.86%, 71.32%, 83.15%, 63.44%, and
73.25%, respectively. These water conservation spaces (Figure 10) were the most valuable
water conservation ecological spaces in 1983, 1990, 2000, 2010, and 2016, respectively.

Table 4. Evaluation results of water conservation function in Jilin province.

Year Inflection
Point ID Area/km2 Cumulative Area

Proportion/%

Water
Retention

Capacity/108 m3

Cumulative
Function

Proportion/%

1983 83,404 82,550 44.05 1.48 63.86
1990 101,437 98,554 52.59 1.85 71.32
2000 105,952 105,956 56.54 1.71 83.15
2010 73,217 73,161 39.04 1.71 63.44
2016 106,135 106,181 56.66 2.13 73.25
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Finally, the most valuable functional areas of water conservation from 1983 to 2016
were intersected, and the ‘high importance’ functional areas of water conservation in Jilin
province were obtained by correcting by the national nature reserves data. Then, the
‘Medium importance’ functional areas were merged to obtain the most valuable ecological
space of water conservation from 1983 to 2016. Finally, other areas were set as ‘low
importance’ water conservation functional areas. As shown in Figure 11, high-importance
areas were distributed in the south-central mountains, accounting for 36.97% of the total
area. Except for protected areas such as the Momager wetland and Xiang Hai wetland,
34.3% of the areas in western Jilin province had the weakest water retention capacity.
The delimitation results of ecological space for water conservation can not only serve the
management of water resources and the macro-control of natural resources in Jilin province
but also put forward a new method for the delimitation of ecological space in arid and
water-scare areas.
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4. Discussion

(1) The diversity of factors affecting the water conservation change

The water conservation function of an ecosystem is a complex and comprehensive
regulation process affected by many factors [62,63]. The process of water conservation
is affected directly or indirectly by changing the type and structure of the underlying
surface for land use. Specifically, soil porosity is affected by the changes in soil texture
and structure, so the hydrological process is also affected [64–66]. It was found that
the increase of cultivated land and buildings area will lead to an increase of regional
water conservation to a certain extent, while the decrease of grassland area will lead to a
corresponding improvement of water retention capacity. This conclusion was based on
the internal homogeneity of each land-use type. However, if the internal differences of
different land-use types were considered, the impact of land use on water conservation
presented a more complex network structure. A variety of interaction modes were coupled
with each other to form a complex interaction system. All the land use types involved in
this paper were the broadest and simplest ways, which had relative limitations in the ways
that affect water conservation and even many ecosystem services.

(2) Contributions and Limitations

In view of the relative scarcity and uneven distribution of water resources in the study
area, the evaluation of the water conservation function of a large ecosystem is helpful
to make rational use of limited water resources and alleviate the contradiction between
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supply and demand of water resources; it is also of positive significance to the formulation
of ecological protection policies [67,68]. Applying the methodological framework to the
delineation of important ecological space of water conservation in Jilin province, the
functional area of water conservation can be quantified scientifically and accurately. In
Jilin province, the government should optimize the planting structure from the perspective
of sustainable development, especially to improve the quality of grasslands in the central
and western regions. At the same time, the restoration plan and ecological environment
management of degraded forestland in the central and southern mountainous areas must
be implemented. In addition, it is necessary to focus on the river beaches and construction
where the water retention capacity has declined most, strengthen the implementation of
national and local ecological construction policies, and perform good work in the planning
of ecological functional areas.

Due to the temporal and spatial differences of influencing factors such as climate,
topography, soil type and structure, surface mulch, land use patterns, social development,
the spatial-temporal scale differences of ecosystem services [69], and the heterogeneity of
ecosystem services [70], whether the results and conclusions of this study can be extended
to other fields remains to be further studied. In this paper, a 1 km × 1 km grid was selected
to divide the evaluation unit. The spatial scale of the evaluation unit was larger, and part of
the water retention capacity information may be omitted in the fine spatial scale. How to
choose the appropriate spatial scale according to the purpose of evaluation and the need for
decision making is an important direction that needs to be strengthened in future research.
At the same time, to further explore the water yield and water conservation, the SWAT
model will be used to accurately simulate the water cycle process in the next research.

5. Conclusions and Implications

Human activities and economic development have changed regional ecosystems and
water resources utilization. To cope with these challenges, this study presented a method-
ological framework comprising four steps for ecological space for water conservation. The
results showed that there was obvious spatial heterogeneity in water conservation services
in Jilin province: (1) the high-value areas of water conservation were mainly distributed
in the central and southern mountainous areas, while the low-value areas were mainly
distributed in the ago-pastoral ecotone in the central and western regions. (2) The eco-
logical space of water conservation of ‘high importance‘, ‘medium importance‘, and ‘low
importance‘ accounted for 36.97%, 28.73%, and 34.30%, respectively.

The ecological spatial distribution of water conservation types at different levels was
relatively concentrated, and the main determinants of this spatial distribution were surface
vegetation cover and P. The framework of this paper is helpful to delineate the key areas
of water conservation ecological space in the other arid and water shortage areas. It is
possible for our framework to further understand the relationship between the regional
environment and the use of water resources, which may also assist decision-makers in
natural resource management by balancing the quality of ecosystem services and the
allocation of natural resources.
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