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Abstract: Most cities in China, especially industrial cities, are facing severe air pollution, which affects
the health of the residents and the development of cities. One of the most effective ways to alleviate
air pollution is to improve the urban ventilation environment; however, few studies have focused
on the relationship between them. The Frontal Area Index (FAI) can reflect the obstructive effect of
buildings on wind. It is influenced by urban architectural form and is an attribute of the city itself that
can be used to accurately measure the ventilation capacity or ventilation potential of the city. Here, the
FAIs of 45 industrial cities of different sizes in different climatic zones in China were computed, and
the relationship between the FAI and the concentration of typical pollutants, i.e., NO2, were analyzed.
It was found that (1) the FAIs of most of the industrial cities in China were less than 0.45, indicating
that most of the industrial cities in China have excellent and good ventilation capacities; (2) there
were significant differences in the ventilation capacities of different cities, and the ventilation capacity
decreased from the temperate to the tropical climate zone and increased from large to small cities;
(3) there was a significant difference in the ventilation capacity in winter and summer, indicating that
that with the exception of building height and building density, wind direction was also the main
influencing factor of FAI; (4) the concentration of NO2 was significantly correlated with the FAI, and
the relative contribution of the FAI to the NO2 concentration was stable at approximately 9% and was
generally higher than other socioeconomic factors. There was a turning point in the influence of the
FAI on the NO2 concentration (0.18 < FAI < 0.49), below which the FAI had a strong influence on the
NO2 concentration, and above which the influence of the FAI became weaker. The results of this study
can provide guidance for suppressing urban air pollution through urban planning.

Keywords: frontal area index; urban ventilation capacity; NO2 concentration; different climatic zones;
cities of different sizes; relative contribution; marginal effect

1. Introduction

With urban expansion and industrial development, urban areas are facing an increas-
ing number of serious air pollution problems worldwide [1,2]. Urban pollution not only
directly poses a serious hazard to human health and affects the growth of vegetation, but
it also has an important impact on the local climate. For example, air pollution increases
urban rainfall [3] and enhances the urban heat island effect [4,5]. Therefore, air pollution
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has a great impact on the sustainable development of cities [6–8]. Thus, identifying a
method to alleviate air pollution has become the focus of academic attention.

The blocking of the wind flow by tall or dense building groups in a city can alter the
residence time of air pollutants in the building environment, and the positional relationship be-
tween the buildings and the wind direction also affects the diffusion direction and range [9–12].
Thus, the architectural form influences the internal ventilation of the city and significantly
impacts urban air pollution [9]. However, at present, most studies have mainly focused on the
impacts of the wind speed, temperature, population, economy, and other factors on urban air
pollution from natural and socioeconomic aspects [13–17]. Most studies have only focused
on evaluating the urban ventilation capacity or the impact thereof on the urban heat island
effect, and few studies have focused on improving urban air quality from the perspective of
urban planning and architectural morphology. For example, studies have shown that the wind
speed in Hong Kong has been reduced from 10.5 m/s to 2.5 m/s (a four-fold reduction) due to
obstacles and the wall effect of buildings, which adversely affects the heat island conditions [18].
Improving urban ventilation can effectively alleviate the urban heat island effect and reduce
the urban energy demand [19]. Therefore, how to effectively suppress urban air pollution by
improving the urban ventilation capacity needs to be further explored.

In previous studies, most scholars have used different architectural morphological
parameters to describe the ventilation capacity of a city, such as building density, average
building height, the standard deviation of building height, average building volume and
closeness, etc. [20,21]. For instance, the building height and the standard deviation of
building height can be used to measure the urban ventilation capacity, thus helping to
improve urban ventilation and to alleviate the urban heat island effect [6]. In addition,
changes in the wind speed, direction, and airflow caused by changes in the building height,
volume, shape, and density in high-density urban areas can also reflect the urban ventilation
capacity [21]. On this basis, studies proposed a spatial planning strategy to control the wind
environment by optimizing the urban form. However, these indices cannot fully reflect
the urban ventilation capacity. Thus, other studies have established the Frontal Area Index
(FAI) to represent a city’s ventilation capacity [18,19,22,23]. Compared to commonly used
parameters such as building height and density, the FAI couples the building height, building
density, and urban wind direction; thus, it can more accurately measure the obstructive
effect of buildings on wind and describe the urban ventilation capacity [18,24–26].

As one of the largest developing countries in the world, 135 of China’s 337 cities have
exceeded the environmental air quality standard, accounting for 40.1% of all of the cities
in the country. Among them, air pollution is the most serious problem in China’s mega
industrial zones, such as the Beijing–Tianjin–Hebei region, the Yangtze River Delta, and
the Pearl River Delta [14,27–29]. It is estimated that the direct economic losses caused by
the emergency response to heavily polluted weather in the Beijing–Tianjin–Hebei region
account for 0.4–2.6% of the local Gross Domestic Product (GDP) [30]. In addition, in various
air pollution studies, NO2 has gradually been highlighted because it is the best index
for measuring air pollution in industrial cities [31,32], which may experience ozone (O3)
formation, acid rain, and aerosol particulate matter (PM) [17,33], causing cardiovascular
and respiratory diseases, endangering human health [33–36], and destroying the local
ecological environment [33]. Thus, it is of great significance to determine how to alleviate
the NO2 concentration in Chinese cities, especially in industrial cities.

Based on the above analysis, we obtained building information for 45 industrial cities
in China from Baidu Maps and calculated the FAIs of the different cities using ArcGIS.
Additionally, we also obtained the full-year, summer, and winter NO2 concentration data
for 45 cities from the Google Earth Engine. Then, we used the FAI index to evaluate the
ventilation capacities of these 45 cities; finally, we employed the random forest regression
algorithm to explore the relative contribution of the FAI to the NO2 concentration and its
marginal effect. This study aimed to (1) clarify the overall ventilation capacities of 45 major
industrial cities in China as well as the differences in the ventilation capacities of cities of
different sizes in different climatic zones; (2) reveal the influence of the urban ventilation
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capacity on the concentration of NO2 and its degree; and (3) determine the impact mode
and feasibility of mitigating the urban NO2 concentration.

2. Materials and Methods
2.1. Study Area

In this study, 45 cities (Figure 1) were selected as the representative industrial cities in
China. In these 45 cities, industrialization is the foundation of development. The output
value of the secondary industry accounts for more than 30% in most of the cities, of which
the proportion is smallest in Guangzhou (27.27%) and largest is in Tangshan (61.55%) In
terms of city type, light industrial cities such as Wenzhou and Zhuhai and heavy industrial
cities such as Shenyang and Dalian were included. The city scale includes large cities such
as Shenzhen and Guangzhou as well as small- and medium-sized cities such as Jinhua
and Jiaxing. The GDP, industrial output, and total population of the 45 cities account for
44.5%, 45.5%, and 36.8% of the national values, respectively. Moreover, these cities straddle
different climate zones in China and have different geographical locations (Figure 1), so
they adequately represent the industrial cities in China.
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2.2. Research Framework and Data Source

Our research framework follows three main steps (Figure 2):

(1) FAI calculation: We used construction data for 1,877,100 buildings in 45 Chinese
cities, which we obtained from Baidu Maps (https://lbsyun.baidu.com/ (accessed
on 20 June 2021)).The construction information included the outline and height, and
the urban areas were divided into regular grids with a resolution of 1 km × 1 km.
NO2 has a very strong diurnal cycle, with large differences between day and night.
However, the satellite–5P data that we used only reflect the local NO2 concentration
at noon. In order to match the satellite data, we obtained the daytime wind data
from each city’s weather station and calculated the wind frequency for the different
wind directions. Based on this, FAI and NO2 concentration maps were plotted one by
one. Finally, the FAI of each grid was calculated using ArcGIS (see research methods
for details).

(2) Evaluation of the urban ventilation capacity based on the FAI: FAI was used to
evaluate the overall ventilation capacities of the 45 cities, and the paired difference
test method was used to compare the ventilation capacities of the industrial cities of
different sizes and in different climate zones.

(3) The influence of FAI on the NO2 concentration: We determined the correlation be-
tween the FAI and NO2 concentration using correlation analysis. Then, we compared
the relative contribution to and marginal effect of the FAI on the NO2 concentration
with other factors (such as the Normalized Difference Vegetation Index (NDVI) and
the secondary output value) using the random forest regression method. In addition,
the impact of FAI on the NO2 concentration was explored. The data used in this study
are presented in Table 1.
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Table 1. Data sources.

Data Time Details of the Data Purpose Source

Construction data 2019 Vector data Calculate the frontal area https://lbsyun.baidu.com/
(accessed on 20 June 2021)

Sentinel–5P 2019 Annual average of the
tropospheric column of NO2

Determine NO2
concentration in
industrial cities

https://s5phub.copernicus.
eu/dhus/#/home (accessed

on 7 May 2022)

Meteorological data 2019

Daily data recorded by
Chinese ground observation

stations, which is
corresponds to the daily

mean wind

Determine the
wind direction

https://data.cma.cn/
(accessed on 14 May 2022)

Climatic
zoning data 2016 Annual average data

Determine the city wind
direction, demeanor,

rainfall, and other
natural factors

https://www.resdc.cn/
Default.aspx (accessed on

5 October 2021)

Urban secondary
industry and

population data
2019 Annual average data Determine the size of

the city

https://www.resdc.cn/
Default.aspx (accessed on

5 October 2021)

Traffic 2019

Obtain vehicle speed data
from different streets and
calculate the number of

vehicles using the
relationship between vehicle
speeds data and the number

of vehicles

Determine the number of
cars per grid

https://lbs.amap.com/api/
webservice/guide/api/
direction (accessed on

27 May 2022)

2.3. Research Method
2.3.1. Calculation of FAI Based on ArcGIS
Calculation of FAI

The FAI is defined as the ratio of the projected area on the frontal side of a certain
wind direction θ to the unit area of a structure in a unit area [37] (Figure 3a). For the same
construction, the FAI corresponding to different wind directions θ is generally different. Its
calculation formula is as follows:

λ f (θ) = ∑ AF(θ)/AT (1)

where λ f (θ) is the FAI of the unit grid for wind direction θ, AF(θ) is the sum of the projected
areas of all of the structures in the unit grid for wind direction θ, and AT is the area of
the unit grid. The lager λ f (θ) is, the more the structures in the unit grid hinder the wind
with direction θ, and the worse the ventilation capacity in direction θ is. Since structures
generally have different FAIs for different wind directions, the FAIs of the structure in
all directions should be calculated [22,37], and the weighted average of the FAIs for the
different directions should be determined according to the wind direction and frequency in
the city where the structure is located. The formula is as follows:

λ f = ∑ λ f (θ) × B(θ) (2)

where λ f is the weighted average FAI, and B(θ) is the wind frequency corresponding to
wind direction θ, which is obtained from the statistics of the urban wind direction data.

https://lbsyun.baidu.com/
https://s5phub.copernicus.eu/dhus/#/home
https://s5phub.copernicus.eu/dhus/#/home
https://data.cma.cn/
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
https://www.resdc.cn/Default.aspx
https://lbs.amap.com/api/webservice/guide/api/direction
https://lbs.amap.com/api/webservice/guide/api/direction
https://lbs.amap.com/api/webservice/guide/api/direction
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FAI Calculation Realization

There are many methods of calculating FAI, most of which need to be realized through
programming. The method of calculating FAI based on the minimum enclosing rectangle
was selected in this study [38], and its core ideas are as follows. After the horizontal
contour of the irregular structure is rotated at a certain angle according to the angle of
the wind direction, the width of the minimum outer rectangle of the rotated horizontal
contour of the structure is equal to the width of the frontal side when the horizontal
contour of the structure is not rotated. Furthermore, FAI is calculated using the width
of the rotated horizontal contour, that is, the solution path of the proposed problem is
transformed into the rotation of the minimum enclosing rectangle of the horizontal outline
of the structure (Figure 3b).

In this paper, the C# programming language and the ArcGIS Engine component library
were used for the secondary development in ArcGIS to realize the calculation of the urban
FAI. C# is an object–oriented programming language. Its high efficiency, versatility, and
high interaction with ArcGIS make it the preferred language for secondary development in
ArcGIS. The ArcEngine is a complete set of the embedded Geographic Information System
(GIS) component library and toolset provided by the company ESRI, which provides a
variety of interfaces to realize the independent development of GIS. The algorithm can
be divided into four main parts: 1© according to the angle between the wind direction θ

and the structure, the angle α at which the structure needs to be rotated is determined;
2© the structure is rotated by angle α using the RotateSet entity rotation function in the

IFeatureEdit interface; 3© for a rotated structure, the IEnvelop interface is used to obtain
the minimum envelop rectangle of the structure and to obtain the minimum envelop width
w of the structure. By multiplying the width w and the height h, the frontal area of the
structure in wind direction θ can be calculated; 4© the frontal area λ f (θ) of the structures
in the unit grid for direction θ are obtained and summed to obtain the total frontal area
∑ AF(θ) of the unit grid for direction θ. Furthermore, we divide by AT , i.e., the area of the
unit grid, to obtain the λ f (θ) for direction θ.

Ventilation Capacity Classification Based on FAI

According to existing studies, the range of FAI is mainly between 0.21 and 0.60 [39,40].
Considering the development of cities, the range of FAI has been expanded to a certain
extent. In addition, some researchers in the field of high–density urban wind environmental
improvement have reported that according to the linear relationship between the height
of a pedestrian and the FAI value, the wind speed ratio (pedestrian–level wind speed and
reference level of 500 m in the wind speed ratio) can be obtained. When the FAI value is less
than 0.35, the wind speed ratio may be greater than 0.2, which indicates excellent natural
ventilation. When the FAI is greater than 0.6, the wind speed ratio may be less than 0.1,
which indicates poor natural ventilation [41]. Based on these, the widely recognized FAI
classification system was proposed [26,42]: (1) excellent ventilation capacity (FAI < 0.35);
(2) good ventilation capacity (0.35 < FAI < 0.45); (3) low ventilation capacity (0.45 < FAI < 0.60);
(4) bad ventilation capacity (FAI > 0.60).
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2.3.2. Relative Contribution to and the Marginal Effect of FAI on the NO2 Concentration
Selection of Influencing Factors

Urban air pollutants are mainly influenced by human factors and natural factors. The
former includes economic intensity, urban morphology, and pollution emissions, and the
latter includes climate factors and terrain factors [15,43–46].

Different influencing factors have different abilities that influence air pollutants. For
example, meteorological factors, such as the average temperature, sunshine duration,
surface temperature, wind speed, and relative humidity, are negatively correlated with
the NO2 concentration, while the average pressure and relative humidity are positively
correlated with the NO2 concentration. The primary industry is negatively correlated
with the atmospheric pollutant concentration, but the secondary industry and popula-
tion size are positively correlated with the air pollutant concentration. To analyze the
relative contribution to and the marginal effect of the FAI on the NO2 concentration, we
selected a series of indicators to represent different important indicators based on previous
studies [13,44,47,48], including natural factors such as the atmospheric temperature, wind
speed, altitude, and precipitation and human factors such as the FAI, urban population,
urban secondary output value, urban green plants, and number of cars.

Random Forest Regression

Random forest is an ensemble learning method for classification that is based on
constructing a multitude of decision trees during a training period [49]. Its basic classifier is
the decision tree constructed by the CART algorithm without branch–cutting [50]. We used
the bagging method [51] to make the training set and finally carried out the classification by
voting or regression by averaging. Since the random forest (RF) method has the advantages
of high accuracy, effective operation for large datasets, and resistance to over–fitting, in
this study, the random forest method was chosen to explore the relationship between the
FAI and NO2 concentration. In addition, the RF can provide an importance score for each
feature, so it can be used to quantify the relative contributions of the different variables.
The RF can also generate partial dependencies to explain the marginal impact of each
predictive variable on the response variable [52]. Therefore, it is widely used to analyze
the relationships between urban air pollution and environmental variables. In this study,
the RF model was developed using Python to study the relationship between the FAI
and NO2 concentration [53]. For model training and validation, the NO2 concentration
and FAI data for 1,877,100 grids in 45 cities were divided into test groups (80%) and
validation groups (20%). On this basis, we computed the mean absolute percentage error
(MAPE) regression loss to detect the random forest detection accuracy and observed general
prediction accuracy (Figure A1). The results showed that 34 of the 45 cities studied had
a MAPE of less than 20%, showing excellent accuracy of the predicted values. Moreover,
the MAPE of the remaining 12 cities was slightly larger than 20% and much smaller than
50%. Accordingly, we explored the importance of the nine influencing factors of the NO2
concentration as well as the relative contribution of FAI on the NO2 concentration. Feature
relative contribution refers to techniques that assign a score to input features based on
how useful they are at predicting a target variable, which can show the impact degree of
different impact factors on the impact target. Moreover, a partial dependence graph (PDP)
was drawn to investigate the marginal effect of FAI on the NO2 concentration.

3. Results
3.1. Analysis of Overall Ventilation Capacities of Industrial Cities Based on FAI

The FAIs of most of the industrial cities in China were less than 0.45, which means that
the majority of the industrial cities had good (56%) or excellent (31%) natural ventilation
effects (Figure 4a). Among them, Tangshan had the lowest average FAI (0.24). The FAIs
of 79% of the areas in the city were less than 0.35, indicating an excellent ventilation
ability; the FAIs of 89% of the areas were less than 0.45, indicating a good ventilation
capacity. In contrast, the average FAI in Shenzhen was greater than 0.6, and the FAIs of
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42% of the areas in the city were greater than 0.6, indicating that Shenzhen had the worst
ventilation capacity among all of the industrial cities (Figure 4c,d). In addition, considering
the seasonal differences, there is statistically significant difference in the FAI between winter
and summer (Figure 4b), indicating that the ventilation capacities of the industrial cities
exhibit large seasonal variation.
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and Tangshan.

3.2. Analysis of Ventilation Capacity Differences in Industrial Cities Based on FAI

The FAIs of the industrial cities located in different climate zones were significantly
different (p < 0.005, Figure 5a). As the latitude decreased, the FAIs of the cities increased,
and the ventilation capacity decreased. The FAIs of all of the industrial cities in the
northernmost middle temperate zone were less than 0.45, indicating excellent (75%) or good
(25%) ventilation capacities. In contrast, the FAI of the industrial cities in the southernmost
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southern subtropical zone were all greater than 0.35, indicating that there are no cities with
excellent ventilation capacities in this climate zone. Moreover, the cities with FAIs less than
0.45, that is, cities with good ventilation capacities, only accounted for 56% of all of the
industrial cities in this climate zone. Similarly, there are significant differences in the FAIs
of the cities of different sizes (p < 0.005, Figure 5b). In general, the smaller the city was, the
smaller the FAI was, and the better the ventilation capacity was. Among the industrial cities
analyzed in this study, the FAIs of 50% of the small cities and 31% of the medium cities were
less than 0.35, and this situation did not occur in the large cities. This is mainly because
the different climate zones and different city sizes led to differences in the city building
density and building height [54]. Compared to large cities, the development of small and
medium–sized cities is more backward, which leads to lower building heights, a lower
density, and less obstructions to natural wind, leading to a better ventilation capacity in
small and medium–sized cities. Compared to cities at low latitudes, cities in high latitudes
have smaller solar zenith angles. In order to obtain more sunlight and to meet the demand
for lighting, cities in high latitudes have lower buildings and lower density, which leads to
a stronger ventilation capacity.
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zones; (b) cities of different sizes.

3.3. Influence of FAI on NO2 Concentration in Industrial Cities

There was a significant positive correlation between the FAI and NO2 concentration
in the industrial cities [37], and the correlations were moderate (58%) and low (42%). The
main reason for the lower correlations is that the concentrations of the air pollutants in
the cities were controlled by a variety of factors. The correlation between each impact
factor and the air pollutant concentration was not very high, which is consistent with most
previous studies [14–17]. A moderate correlation was found between the FAI and NO2
concentration in all of the cities in the middle temperate zone, but only 33% of the cities
in the southern subtropical zone had moderate correlations. The number of moderate
correlations between the FAI and NO2 concentration in the large cities (88%) were stronger
than those in the small and medium cities (51%). In terms of the relative contribution, the
relative contribution of the meteorological factors such as temperature, precipitation, and
wind speed to the NO2 concentration was higher than that of the human factors such as
the FAI and secondary production ratio. However, the relative contribution of the FAI
to the NO2 concentration was still 9%, which was higher than that of the other human
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factors. Similarly, in the different climate zones, the contributions of the different impact
factors to the NO2 concentration were different, but the contribution of the FAI to the
NO2 concentration remained at a relatively stable level. With the exception of the middle
temperate zone (11%), the contribution of the FAI on the NO2 concentration in the other
climate zones was stable at about 9%, which was consistent with the contribution of the
FAI for the entire country (Figure 6a). However, the contribution of the FAI to the NO2
concentration varied among the different cities. Foshan had the lowest contribution (8%),
and Zhongshan had the highest (27%). This difference was mainly caused by differences in
city construction.
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Figure 6. Relationship between FAI and NO2 concentration. Different colors indicate different
temperature zones: (a) the contribution of FAI to NO2 concentration in different climate zones;
(b) the dependence plots of cities in different climate zones.

From the perspective of the marginal effect, according to the partial dependence plot
(PDP), for most industrial cities, there was an obvious turning point in the influence curve
of the FAI on the NO2 concentration (0.18 < FAI < 0.49) (Figure 6b). Before the turning point,
the NO2 concentration increased significantly as the FAI increased. However, after the
turning point, the influence of the FAI on the NO2 concentration began to decrease. Even
if the FAI continued to increase, the increasing trend of the NO2 concentration was not
obvious. A comparison of several cities revealed that the turning points of the temperate
cities and subtropical cities were different. The turning points for subtropical cities (0.32)
were higher than the turning points for temperate cities (0.2), which was 1.6 times higher
than the value for temperate cities.

The relative contribution was further analyzed, meteorological factors such as tem-
perature, rainfall, and wind speed had a greater impact on pollutants, which indicated
that a city’s natural capacity is very important to suppress the NO2 concentration. The
results of random forest importance were taken as weights, and the temperature, rainfall,
and wind speed data of different cities were weighted and averaged to obtain the natural
capacities. The results showed that Harbin, Shijiazhuang, Zhuhai, and other cities had
relatively good natural capacities. These cities did not show particularly obvious spatial
or climatic characteristics, but at least one of the three natural conditions—temperature,
rainfall, and wind speed—was significantly higher than in other cities, such as rainfall in
Harbin and wind speed in Zhuhai. In this case, the marginal effect of the FAI on the NO2
concentration was close to zero or even negative.
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4. Discussion
4.1. FAI–Based NO2 Concentration Control Strategy

Based on the relative contribution analysis above, the relative contributions of the
natural factors such as temperature, precipitation, and wind speed to the NO2 concentration
were greater than those of the socioeconomic factors such as FAI and the urban secondary
production ratio. These results are similar to the results of other previous studies [47,48,55].
Although lower than those of the natural factors, the relative contribution of the FAI to the
NO2 concentration (9%) was greater than those of the other socioeconomic factors, such as
the urban population. Furthermore, it is difficult to change the meteorological conditions
such as wind and precipitation; hence, restraining the FAI at a certain level should be a
feasible and efficient method of suppressing the urban NO2 concentration.

According to the results of marginal effect, the effect of the FAI on the NO2 concentra-
tion was divided into two stages according to the turning point, and different regulation
strategies should be adopted according to different stages. Taking the industrial cities in
the temperate zone as an example, the range of turning points is mainly between 0.18–0.30.
If the city’s FAI is less than 0.18, the FAI has a strong influence on the NO2 concentration,
then a series of measures can be taken to reduce the FAI, thereby effectively alleviating the
city’s NO2 pollution, such as reducing the building density, reducing the building height
and width, increasing single–family buildings, and increasing building gaps [20,42]. If the
city’s FAI is greater than 0.30, then restraining the FAI to alleviate the city’s NO2 pollution
is inefficient or even ineffective. Therefore, other measures are needed to alleviate the urban
pollution, such as increasing the urban green spaces, relocating factories, and upgrading
industrial institutions [56–58]. In addition, subtropical cities have a higher range of turning
points (0.26–0.49), suggesting that FAI can play a role in mitigating pollution in cities with
more compact or taller buildings compared to temperate cities.

Comparing the ventilation capacity of each industrial city with the turning point of the
city, it can be seen that the FAIs of about 60% of the cities are less than or close to the turning
points of the effect of the FAI on the NO2 concentration, indicating that for most cities, the
urban ventilation capacity has a strong influence on the NO2 concentration. Therefore, the
regulation of the FAI can be used as the main means to alleviate urban NO2 pollution. For
the remaining cities, although the overall FAI of the city is higher than the turning point,
there are still a large number of areas within the city where the FAI is smaller than the
turning point. The FAI can be regulated in these areas to improve urban NO2 pollution.

4.2. FAI–Based NO2 Concentration Control Strategy

A city is a densely populated area with diverse social and economic activities, so it
can be divided into different functional areas, such as industrial areas and commercial
areas [59]. Based on the points of interest data and previous studies, in this study, the city
was divided into five functional areas: residential, industrial, commercial, public service,
and transportation [60,61]. The statistics of the FAI values of the different functional areas
show that the average FAI of the commercial areas was 0.48 and the average FAI of the
residential areas was 0.40, which were much greater than those of the industrial (0.29),
transportation (0.33), and public service areas (0.29). Further analysis revealed that the
average FAI values were greater than the turning points (0.18–0.49) in commercial and
residential areas, indicating that the FAI had a weak influence on the NO2 concentration in
the urban commercial and residential areas. In these places, even when the FAI is reduced,
its effect on the NO2 concentration is insignificant. The reason for this is that commercial
and residential areas are mainly located in the central area of the city [60]. Due to the high
land price and intensive economic activities, buildings in these areas are mainly high–rises
and high–density buildings that are more compact [6]. In these areas, the layout planning is
relatively complete, and it is difficult to carry out large–scale transformation [62]. Even if
the FAI value of the regions is reduced to a certain extent through a series of measures, the
buildings in these regions still have a strong blocking effect on the natural wind, which is
still not conducive to the diffusion and mitigation of NO2 and other pollutants. We believe
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that FAI regulation should be focused on service areas, transportation areas, and industrial
areas. The FAI values of these three areas are all within the range of the turning point
(0.18–0.49), indicating that the FAI values of these areas have a stronger influence on the
NO2 concentration, so it will be easier to reduce the NO2 concentration in these cities by
reducing the FAI. In particular, compared to industrial areas and transportation areas, public
service areas are more closely connected to commercial and residential areas, and they are
more likely to develop into high–value FAI areas, so they should become the key areas for
urban planning and construction. A series of measures can be taken to reduce the FAI value
by designing a low–building street aspect ratio, increasing the building porosity, designing
stepped height buildings, and so on to fully alleviate NO2 pollution in cities [20,56].

4.3. Future Work

In this study, the ventilation capacities of China’s industrial cities were quantitatively
evaluated by calculating the FAIs of the urban buildings and analyzing the relationship
between FAI and the urban NO2 concentration. The results of this study provide guidance
for related urban planning tasks. However, this research still had certain shortcomings.
First, we only studied the changes in the urban NO2 concentration in the same year, and
only one period of building–related vector data was available. Therefore, this study lacked
a comparative study of long–term data series. In addition, this research only paid attention
to the influence of the FAI index on the NO2 concentration, and the influence of the FAI
on other air pollutants was ignored. Therefore, in the future, long–term research can be
conducted by obtaining long–term pollutant data and building data. In addition, more air
pollutants can be introduced, and the impact of the FAI on pollutants can be analyzed from
a more comprehensive perspective.

5. Conclusions

In this study, the C# language was used to calculate the FAIs of 45 industrial cities in
China, which were then used to quantitatively express their urban ventilation capacities. The
results showed that China’s industrial cities generally had excellent and good ventilation
capacities, and the ventilation capacity was affected by the wind direction in winter and
summer. There were significant differences in the ventilation capacities of industrial cities of
different sizes and in different climatic zones. Second, based on a regression algorithm and
random forest algorithm, the correlation with, relative contribution to, and marginal effects
of the urban FAI on the NO2 concentration were calculated. Notably, the FAI and NO2 had
significant correlations, and the relative contribution was stable at about 9%, which was
lower than those of the natural factors but generally higher than those of the social factors.
For most industrial cities, there was a turning point in the influence of the FAI on the NO2
concentration. If the city’s FAI was below the turning point, the city’s FAI could be amended
to improve the city’s NO2 concentration. If the city’s FAI was already above the turning
point, the method of suppressing the urban NO2 concentration by restraining the urban FAI
would be inefficient. The FAIs of about 60% of the cities are less than or close to the turning
points of the effect of the FAI on the NO2 concentration, indicating that for most cities, the
regulation of the FAI can be used as the main means to alleviate urban NO2 pollution.
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