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Recently, 3-D scanning data are becoming increasingly important for precision livestock

farming. In particular, RGB-D (red, green, blue e depth) data of livestock have come to play

a critical role in the field of livestock body measurement. However, the latest livestock pose

normalisation methods rely on purely 3-D geometric data and are therefore prone to errors

due to noise and missing data. To achieve adequate performance, particularly for different

livestock species in practical applications a 2-D/3-D fusion-based robust livestock pose

normalisation method is proposed. Firstly, based on advanced 2-D object detection tech-

niques, the proposed approach makes the best use of 2-D information to determine the

accurate orientation of livestock in 3-D. Secondly, the 2-D detection results are used to

generate frustums in 3-D space to locate livestock targets, which markedly reduces the

search space and improves segmentation. Finally, based on a bilateral symmetry-based

pose normalisation framework, a more robust pose normalisation algorithm is applied.

Compared to existing pose normalization methods that operate in 3-D, extensive experi-

ments with multiple view RGB-D data of livestock show that the proposed method is more

robust and practical than existing methods. The proposed algorithm provides pose nor-

malisation in an automatic body measurement system for livestock. This study proposes

that the idea that 2-D/3-D fusion-based strategies in 3-D should be explored in more detail,

particularly for cases in which the 3-D input captured by consumer designed RGB-D

cameras which are often noisy and miss values at certain pixels. All the training data-

bases and codes used in the study can be downloaded freely.

© 2021 IAgrE. Published by Elsevier Ltd. All rights reserved.
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Nomenclature

2-D/2D Two dimension

3-D/3D Three dimension

RGB-D Red, green, blue and depth

ReCNN Regions with convolutional neural networks

features

CCS Canonical coordinate system

PN Pose normalisation

YOLO You only look once

YOLO v4 Optimised YOLO

COCO Common objects in context

SPNA Pose normalisation approach Guo et al. (2019)

OSPNA Optimised SPNA

mAP Mean average precision

IoU Intersection over union

BCS Body condition score

FDD Forward direction determination

LS Livestock segmentation

SLS Supported livestock species
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1. Introduction

The shape of an animal is a significant indicator of its physical

condition (Klingenberg, 2010; Savin et al., 2011). In particular,

in the field of precision livestock farming, livestock body

measurements have become the most direct method to

quantify the shape of individual animals (Guo et al., 2019).

This study is mainly based on a previous study (Guo et al.,

2019) but here the deficiencies of pose normalisation, such

as livestock segmentation and forward direction estimation,

have been reduced greatly improving the results of pose

normalisation.

Several hardware and software technologies have been

developed to support measurements and estimation of pa-

rameters.Machine vision has beenwidely used for contactless

animal body measurements to overcome the limitations of

traditional manual measurement methods (Kuzuhara et al.,

2015). Researchers have demonstrated the feasibility of

determining the body shape of cattle, pigs, sheep, and horses

via videos and images (Azzaro et al., 2011; Brandl & Jørgensen,

1996; Marchant, Schofield, & White, 1999; Menesatti et al.,

2014; Pallottino et al., 2015; Tasdemir, Urkmez, & Inal, 2011;

Wongsriworaphon, Arnonkijpanich, & Pathumnakul, 2015;

Yilmaz, Cemal, & Karaca, 2013). However, there are many

challenges in using only the 2-D information contained in

images or videos to determine the shape of livestock. These

aremainly related to the difficulty of estimating the volume of

the animal (Mortensen, Lisouski, & Ahrendt, 2016; Salau,

Haas, Junge, & Thaller, 2017a).

Researchers have therefore begun to focus on the use of

three-dimensional (3D) information (Li et al., 2020; Zhang,

Shen, Wang, Kong, & Yin, 2018). Over the past few decades,

many studies have been published contributing to 3-D point

cloud processing (Vosselman, Coenen, & Rottensteiner, 2017;

Wang, Hu, Wu, & Wang, 2016), autonomous vehicle naviga-

tion (Yang et al., 2017), forest assessment (Polewski, Yao,

Heurich, Krzystek, & Stilla, 2017), building information
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modelling (BIM) (Thomson & Boehm, 2015) and industrial

applications (Luhmann, 2010). Recently, the consumer depth

sensors, such as Intel RealSense or Microsoft Kinect, have

provided 3-D data and provided new methods to capture the

shape of individual livestock (Hao et al., 2017; Kawasue,

Ikeda, Tokunaga, & Harada, 2013; Pezzuolo, Guarino,

Sartori, Gonz�alez, & Marinello, 2018; Salau, Haas, Junge, &

Thaller, 2017b; Viazzi et al., 2014). Song, Bokkers, van der

Tol, Koerkamp, and van Mourik (2018) reported on animal

weight estimation errors and the influence of different

sources on results. Shuai et al. (2020) presented a 3-D surface

reconstruction and body measurement system based on

multiple RGB-D cameras. A Kinect depth camera was used to

obtain the point cloud of the freely walking pig from three

different views and to accurately measure relevant param-

eters of the livestock.

Thus, with the improvement of optical technologies

(Lichti, Qi, &Ahmed, 2012), it has become easier to obtain 3-D

information about objects. Many problems that are difficult

to solve using 2-D information can be solved with 3-D in-

formation to describe objects. However, collection of 3-D

information is typically slower than 2-D and as such often

leads to problems that might be solved or reduced taking

advantage of more rapidly obtained 2-D information. By way

of example, in Guo et al. (2019) only 3D geometric informa-

tion was used to determine the forward direction of live-

stock: in many practical cases and this led to errors in pose

normalisation. In Shuai et al. (2020), although 3-D informa-

tion of body shape was effectively achieved errors as high as

3e5% remained in the estimation of body dimensions.

Research studies are required to show how 2-D and 3-D in-

formation might be successfully integrated in order to

converge towards more repeatable and less uncertain

results.

There aremany studies that use 3-D information to detect

and segment objects, and use this to achieve a specific goal

(Cao et al., 2020; Gong et al., 2020). However, when seg-

menting a 3-D object, researchers more commonly use 2-D

object detection technology to detect objects in 2-D images,

thereby reducing the 3-D search space and computation

required for 3-D data processing (Qi, Liu, Wu, Su, & Guibas,

2018; Shen et al., 2020). Lahoud and Ghanem (2017) used

the latest 2-D object detection technology to make full use of

2-D information to reduce the 3-D search space. Indeed, with

the development of artificial intelligence, deep learning

technology has rapidly improved, and it is being applied to

enhance a wide range of applications in 2-D image detection.

2-D image detection technology combined with deep

learning approaches, such as ReCNN (Regions with con-

volutional neural networks features) (Girshick, Donahue,

Darrell, & Malik, 2014), Fast ReCNN (Girshick, 2015), Faster

ReCNN (Ren, He, Girshick, & Sun, 2017), and YOLO (Redmon,

Divvala, Girshick, & Farhadi, 2016), might then constitute a

robust reference for position detection of 2-D image objects

(Tassinari et al., 2021), having marked advantages over 3-D

detection methods both in terms of time and accuracy.

Thus, generally speaking, combining 2-D and 3-D methods

can allow more complex practical problems to be addressed

(Acharya, Khoshelham, & Winter, 2019; Luo et al., 2020;

Xiang, Wang, Lao, & Zhang, 2020).
se normalisation of 3-D livestock from multiple RGB-D cameras,
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Using multi-view RGB-D data, a 2D/3D fusion-based robust

livestock pose normalisation approach was proposed that can

take full advantage of 2-D and 3-D information. It was hoped

that this can achieve excellent performance, particularly for

different livestock species in practical applications. The pose

normalisation method proposed to solve the problems

encountered during the automatic body measurement of

livestock. This method was divided into four components:

estimation of the forward direction of the livestock, livestock

segmentation, bilateral symmetry plane estimation, and pose

normalisation transformation. During forward direction esti-

mation, the latest livestock normalisation method relied on

the assumption that the data of livestock must be complete

(Guo et al., 2019). However, missing the front or rear of live-

stock often occurred during 3-D scanning in farming condi-

tions. Thus, using this feature to judge the orientation of

livestock will frequently cause errors in forward direction

estimation. Similarly, during the step of livestock segmenta-

tion, the study of Guo et al. (2019) assumed that an animal

stands on flat ground without other farm facilities in the 3-D

scene. When there is more than one plane in the point cloud

or the ground plane is small, incorrect judgements of the

target cluster are common. Finally, pose normalisation

transformation is based on the results of the forward direction

estimation, target segmentation, and bilateral symmetry

plane estimation. Therefore, if the result of the previous pro-

cesses is incorrect, then the subsequent pose normalisation

will fail. The proposed approach solves the deficiencies of

forward direction estimation and livestock segmentation. By

introducing 2-D object detection technology, a more robust

method for the pose normalisation of livestock is proposed.

The primary contributions of this paper are as follows:

� An optimised automatic pose normalisation framework

is proposed.

� Combination of 2D object detection and 3D point cloud

technology to enhance pose normalisation.

� Improved livestock segmentation and estimation of

forward direction is demonstrated.

� All training data and codes can be downloaded freely

from the provided links (Guo & Lu, 2021) for use by the

livestock industry and research community.
Fig. 1 e Examples of livestock 3
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2. Materials and methods

2.1. 3-D input requirements

Before starting the research, certain assumptions need to be

made and they can be crucial to its success. Firstly, animals

are assumed to stand upright on the ground and cannot

intersect with other objects. The animal is assumed to stand

on the ground with its head facing forward. This means that

the top view of animals is almost straight. In addition, the 3-D

animal data is point cloud data after registration from

different aspects, and thus the integrity of the data can be

guaranteed without toomuchmissing. It is important that the

data of each animal includes the body, head, and hip. The

conditions for obtaining data for each animal should be

similar. Point clouds denoted by S ¼ fpig were used which

contain the animal, flat ground, and any obscuring objects in

the visual frame. Additionally, to test the robustness and

generality of the proposed pose normalisation method, this

paper considers both double-view RGB-D data for pigs (Guo

et al., 2019) and the triple-view RGB-D data for cattle

(Ruchay, Dorofeev, Kalschikov, Kolpakov, & Dzhulamanov,

2019).

The triple-view RGB-D data of cattle were captured from an

automated computer vision system. The cattle data capture

system is shown in Fig. 1(a). An RGB-D camera was placed on

each side of a cattle passage, and the distance between the

camera and target was about 2.0 m. An additional camera was

placed directly above the passage about 3.0 m above the

ground. For more details on the cattle data, please refer to

Ruchay, Kober, Dorofeev, Kolpakov, and Miroshnikov (2020).

As shown in Fig. 1(b), the double-view RGB-D data of pigs were

obtained from two calibrated Xtion Pro RGB-D cameras (ASUS,

China) located at the lateral side of pigs. Both multiple RGB-D

systems acquired input data that complied with the as-

sumptions of the study.More details of assumptions about the

input of 3-D data are given in Guo et al. (2017). Fig. 2 shows

examples of the 3-D point cloud data for pigs and cattle

captured by these systems. To guarantee that the acquired 3D

data complied with the assumptions, only one animal was

examined in each image.
-D scanning system in use.

se normalisation of 3-D livestock from multiple RGB-D cameras,
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Fig. 2 e Example of qualified input multiple view RGB-D data (3-D point clouds).
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2.2. 2-D/3-D fusion based pose normalisation

To efficiently extract the body measurements of livestock

from 3-D data, it is necessary to separate the animal from the

scene. The segmented image of the animal then needs to be

place in a predefined canonical coordinate system (CCS)

(Sfikas, Theoharis, & Pratikakis, 2011). Therefore, an auto-

matic 3-D point cloud pose normalisation framework is

required. The framework proposed can be used for automatic

processing of 3-D data of livestock (Guo et al., 2019). However,

in practical applications, there are still limitations in per-

forming pose normalisation. In particular, using the algorithm

from Guo et al. (2019) missing parts of the animal heads can

easily lead to normalisation failure due to an incorrect deter-

mination of forward direction. These weaknesses were over-

come in this work using a 2-D/3-D fusion strategy, and

sections 2.2.2 to 2.2.5 provide more detail. In Fig. 3, a pipeline

diagram shows a series of procedures for the proposed

method.

The definition of a canonical coordinate system used was

that proposed by Guo et al. (2019), and here the canonical

coordinate system is only briefly summarised. Fig. 4 shows the

details of the CCS for livestock. Multiple RGB-D data of
Fig. 3 e Processing pipeline for propo
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livestock are typically captured in arbitrary orientations and

positions in 3-D space. However, the traits of livestock are

measured along in one fixed direction. Therefore, it is critical

to define a suitable canonical coordinate system for the

automatic analysis of 3-D livestock.

2.2.1. Target region detection
The fundamental procedure in the proposed optimisation to

obtain the position of the targets, including the head, hip and

body, in 2-D. In this study, the existing detectionmodel YOLO

v4 (Bochkovskiy, Wang, Liao, & Hao, 2020) was used to detect

multiple regions of different sizes in a single 2-D image. The

YOLO v4 pretrained model which is trained on the COCO

dataset (Lin et al., 2014) was not used because the pretrained

model did not contain the targets of interest. Random ini-

tialised parameters were used to train the detector to iden-

tify the regions of the livestock's head, hip and body in the

scene.

To train a detector of YOLOv4, a custom dataset was pre-

pared that contained three types of images: virtual images

generated from single-view RGB-D data (pigs and cattle), vir-

tual images generated from double-view RGB-D data (pigs),

triple-view RGB-D data (cattle), and RGB images (pigs and
sed pose normalisation method.

se normalisation of 3-D livestock from multiple RGB-D cameras,
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Fig. 4 e Canonical coordinate system definition (Guo et al.,

2019).
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cattle). Fig. 5 shows an example of the three types of images.

Virtual images can be generated from an arbitrary viewpoint

in which the virtual image contains as many targets as

possible. Additionally, the parameters of the viewpoint were

saved to be used to project the 2-D pixel point into 3-D space.

To obtain the forward direction of the livestock, some re-

gions were selected as detection objects. The choice of the

region was based on distinct characteristics so that it could be

easily obtained through deep learning technology. Therefore,

the point of view needed to include the region selected. After

comprehensive judgment, three obvious targets were

selected: body, hip and head. The three regions selected

therefore should contain as much as possible of the body, hip,

and head of the livestock. Therefore, there were some un-

certain overlaps in these three regions, but this did not affect

forward direction estimation. As shown in Fig. 6, the target

regions were identified with three colours, and the detected

target region is represented by a 2-D window.

Due to the high resolution of RGB information in the image,

the target region detection result wasmore reliable than the 3-

D geometry method. The results of the 2-D target region

detection were then used to locate the targets in 3-D space. To

make the process more efficient, the centre point of the 2-D

window was used to represent the position of target in 2-D
Fig. 5 e Types of the 2-D i
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image. These centre points were then used for livestock seg-

mentation and forward direction estimation.

2.2.2. Livestock segmentation
For the Y-axis defined in CCS, it can be inferred that the Y-axis

of the livestock will be obtained when the ground plane is

estimated. Based on this inference, the sameprocess as in Guo

et al. (2019) was used to determine the ground point clouds. In

this study, the ground plane point cloud was successfully

extracted to obtain the parameters of the ground plane, which

supplied the Y-axis of the livestock. Next, planes from the

down-sampled data D were extracted and removed and

Euclidean cluster extraction was used to divide D into

different clusters. The next step was to determine which

cluster described livestock. Guo et al. (2019) assumed that the

cluster with the largest number of point clouds represented

the livestock; however, this assumption is prone to errors in

practice when there are large planes or facilities within the

scene. In this paper, 2-D object detection technology is intro-

duced to eliminate this assumption and achieve amore robust

segmentation.

From section 2.2.1, the position of the target represented by

the centre point of the 2-Dwindowwas determined. The input

image could be an RGB image captured directly or a generated

virtual RGB image, and the generated virtual image is typically

missing certain targets. Therefore the number of targets that

can be detected in the different types of images is also

different. With poor-quality images, the required target often

cannot be detected. To avoid these problems, to help identify

the cluster that describes the livestock, the body of the live-

stock was chosen as the target because it is easily detected

and is rarely missing from images. The 2-D centre point of the

target region into 3-D space was then projected. It was

assumed from section 2.1, that animals stand upright on the

ground and cannot intersect with other objects. Therefore, the

cluster intersecting with the projecting ray should be the

cluster describing the livestock.

Based on the condition of camera calibration, the camera

internal parameter matrix Ti and external parameter matrix

Te required determination when the image was generated to

project the points from 2-D space into 3-D space. From section

2.2.1, these parameters were saved when the image was
mages (pig reference).

se normalisation of 3-D livestock from multiple RGB-D cameras,
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Fig. 6 e Regions of the livestock's body, hip, and head are labelled in red, blue, and yellow. (For interpretation of the

references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7 e Projection of 2-D pixels into 3-D space (pig

reference).
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generated. Then, using following equation (Andrew, 2001), 3-D

points can be projected into the 2-D pixel points:
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where Zc represents the distance from the camera to the

target; u, v are the pixel coordinates in the pixel coordinate

system; X, Y and Z are the 3-D coordinates in the world co-

ordinate system; fx, fy are the focal lengths in the corre-

sponding directions respectively; u0 and v0 are the coordinates

of the optical center in the pixel coordinate system; R is the

rotation matrix; and T is the translation matrix.

All of these parameters were obtainedwhen the imagewas

generated. The target regions were obtained through 2-D ob-

ject detection and thus the centre point (u, v) of the target

region was obtained in 2-D. Using Eq. (1), the 2-D pixel points

(u, v) into 3-D points (X, Y, Z) were projected by reversing the

formula. In this study, camera internal parameters Ti were

primarily used to convert the camera coordinate system into

the pixel coordinate system, and camera external parameters

Te were used to convert the world coordinate system into the

camera coordinate system. Fig. 7 shows an example of the

projection of 2-D pixels into 3-D space. Thus from Eq. (1), the

position of the target in 3-D space was obtained.

The location of the animal's body, which is denoted by

Pbody, was used to determine the cluster that describes the

animal. For each cluster C*, if fPbody 2C*g, the cluster that

describes the livestock was determined. Fig. 8 illustrates the

judgement process for livestock segmentation.

2.2.3. Bilateral symmetry plane estimation
Bilateral symmetry plane estimation method was described

by Guo et al.(2019), and it is only briefly summarise in this

study. Bilateral symmetry plane estimation depends on live-

stock segmentation results. The correct clustered results can

improve the accuracy of the symmetry plane. Symmetry is

found everywhere in nature. Thus, based on this feature and
Please cite this article as: Lu, J et al., 2-D/3-D fusion-based robust po
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the definition of the CCS, the Z-axis of CCS can be obtained

from the 3-D point clouds of livestock. Therefore, as in Guo

et al. (2019), symmetry estimation was introduced in two

phases. Firstly, the largest profile of the livestock C* was

determined. Then, a voting scheme was used to extract the

symmetric plane from this largest profile, thus identifying the

plane of symmetry of the livestock point cloud and also the Z-

axis, which passes through the plane of symmetry.

2.2.4. Forward direction estimation
Through ground detection and symmetry plane estimation,

the Y-axis and the Z-axis were determined. The X-axis was

determined using the following equation:

nx ¼ny � nz: (2)

where nx is the X-axis with an undetermined sign, ny is the Y-

axis, and nz is the Z-axis with an undetermined sign. To

determine the positive directions of the X-axis and Z-axis, the

forward direction of the livestock must be determined. The
se normalisation of 3-D livestock from multiple RGB-D cameras,
2.013
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Fig. 8 e Determining the target cluster based on the 2-D pixel point (pig reference).
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positive direction of the X-axis (the forward direction of the

livestock) is represented by a vector. From the assumptions of

Guo et al. (2019), the forward direction of the livestock can be

determined. However, the front or rear part of livestock were

often missing during 3-D scanning in farming conditions;

thus, using this feature to judge the orientation of the live-

stock will frequently produce errors in forward direction

estimation. Fortunately, the shortcomings of this forward di-

rection estimation strategy can be overcome using 2-D

detection technology in the proposed method.

Using the process from section 2.2.1, the targets that are

represented by the centre point of the 2-D window were iden-

tified. Through the head and body or hip and body of the live-

stock, the forward direction of the livestock can be determined,

which is represented by a vector in 2-D space. This vector can

be generated by two 2-D points denoted by L1 and L2. The image

use as input to predict may be an RGB image or a generated

virtual image, and the generated virtual image is typically

missing certain targets. Therefore, the number of targets that

can be detected in different types of images is also different.

Therefore, the centre point of the body region is selected as L1

which is easy to be detected, and selecting the centre point of

the detected target region which has higher confidence in the

regions of the head and hip as L2. Finally, among the three

targets, only two (body and head, or body and hip) were used to

generate the forward direction vector in 2-D space.

When the forward direction of livestock represented by a

vector in 2-D space was obtained, the next step was to project

the 2-D vector into 3-D space. In section 2.2.2, how to project 2-
Fig. 9 e Example of when the centre of the 2-D wind

Please cite this article as: Lu, J et al., 2-D/3-D fusion-based robust po
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D pixels into 3-D space was introduced. Fig. 7 shows an

example of the projection of 2-D pixels into 3-D space. How-

ever, when the centre point of the 2-Dwindowwas used as the

head position, and the head of the livestock in the picture was

not complete, the centre of the 2-D window could not fall on

the pixel of the target. Fig. 9 shows a situation in which the

centre of the 2-D window is not on the livestock, which can

also occur during hip region detection.

To solve this problem, instead of selecting the centre point

of the 2-D window of the head or hip of the livestock as L2, L2

should be generated by the relative position of the body of

livestock L1 (xbody; ybody) and the detected target region Lh (xh;

yh), which has higher confidence in the head or hip of live-

stock. Since the forward direction is a vector composed of two

points, and the body of livestock has been determined as L1 as

the starting point of the vector, only another point is required.

However, due to the existence of the situation shown in Fig. 9,

when the head or hip of the livestock is obtained through 2-D

object detection, 3-D points that fall on the livestock cannot be

obtained and can only determine the forward direction of

livestock in 2-D. Therefore, body point L1 must be moved a

certain distance dl in the corresponding direction as another

point L2 in 2-D. Then, L2 (xdirection;ydirection) can be determined for

the direction vector using the following criterion:

if
�
xh > xbody

�
; then

n
xdirection ¼xbody þ dl; ydirection ¼ ybody

o

if
�
xh < xbody

�
; then

n
xdirection ¼xbody � dl; ydirection ¼ ybody

o

ow is not on the livestock due to missing data.
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Fig. 10 e Visualisation of normalisation results for a pig (left) and a cow (right).
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where dl is the length of the direction vector and is equal to 30

pixels in this manuscript. From Eq. (1), L1 and L2 are used to

generate the corresponding 3-D points denoted by Pbody and

Pdirection, respectively. Thus, the conversion from 2-D space to

3-D space is completed. Thus the forward direction vector Vf

can be determined using the following equation:

Vf ¼ Pdirection � Pbody 3

Finally, the vectors nx and nz must be guaranteed to serve

as the X-axis and Z-axis. Therefore, their directions will be

reversed when the following conditions occur:

Vf$nx < 0: (4)

2.2.5. Pose normalisation transformation
Since the X-axis, Y-axis, and Z-axis of CCS have been obtained

in the previous sections, a 3-D rigid transformation can be

calculated. The pose normalisation transformation can also

be found in Guo et al. (2019) so only a brief summary of this

procedure is given. Firstly, the centre point Po of mass of C* is

computed using Eq. (5).

Po

¼
PN
i¼1

pi

N
;pi2C*

(5)

where Po is the centre of mass of C* with N points. Then, the

CCS with nx, ny, and nz is constructed. Finally, the livestock
Fig. 11 e Examples of manually m
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point clouds can be placed within this coordinate system.

Fig. 10 shows a visualisation of normalisation results.

2.3. Experimental data

Data consisting of a total of 397 point clouds was obtained by

scanning in a farming environment for pigs. Point cloud data

comes from Da Bei Nong Group, ShangDong, WeiHai, China

which is mainly engaged in raising pigs. Each live pig was

scanned from both sides, the data from each pig filtered, and

finally registered. The 3-D data came from 52 selected pigs.

The data was scanned frame by frame to remove inappro-

priate data and severely missing data. The point clouds of the

scanned scene contain floors, farm facilities, and the target

pigs. The spatial resolution of these point clouds was 0.005 m,

which means that r is 0.005 m. In this experiment, the dis-

tance between the camera and the target was from 0.8 to

1.6 m. The second dataset included point clouds of live cattle

that were gathered by other researchers (Ruchay et al., 2020),

who made their data freely available to the public. They con-

ducted RGB-D data collection on 103 cattle from three per-

spectives: left, right, and top. They provided the original RGB

image and depth image, as well as the processed point cloud

data. For more details of the farm conditions please refer to

Ruchay et al. (2020). There were 309 single-view point cloud

data and 103 registered point cloud data. The illuminance

during data collection varied from 120 to 160 lx with an
odified data and original data.
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Fig. 12 e Visualisation of targets detected result (area of the body, hip, and head are labelled in red, green, and blue

respectively). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)
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average value of 140 lx. All selected cattle were gathered at the

feed fences in a separate area for image recording. The third

dataset was modified from the second dataset. A dataset of 70

sets of data were randomly selected from the second dataset

and the original data of the third dataset. Then, according to

the deleted part, the original data was divided into on average

7 categories and modified. In Fig. 11, examples are shown

corresponding to the 7 categories.
3. Results and discussion

The proposed pose normalisation method with the point

clouds of livestock in a real farming environment was evalu-

ated and the results of the proposed method compared to

those of the existing method from Guo et al. (2019). The

following subsections describe each experiment.

3.1. Results of target regions detection

In terms of target region detection, 3 categories were adopted

to train and test. The initial datasets contain 1500 images,

including virtual images generated from single-view RGB-D

data (pig and cattle), virtual images generated from double-

view RGB-D data (pig) or triple-view RGB-D data (cattle), and

RGB images (pig and cattle). Additionally, for the proposed

target region detector (pig and cattle), a dataset augmentation

convention was used and flipped images were added to the

training set. After dataset augmentation, the dataset was

expanded to 4500. A total of 80% of the dataset was used for

training, and 20% of the dataset was used for testing. The

proposed algorithm was applied using Linux on a computer

with an 8-core 2.4 GHz CPU and an RTX 2080Ti GPU. The

training and testing of YOLOv4 were performed using
Please cite this article as: Lu, J et al., 2-D/3-D fusion-based robust po
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TensorFlow, and target region detection required 0.14 s for a

single image.

To evaluate the accuracy of the 2-D target detectionmodel,

the mean average precision (mAP) as the standard evaluation

method of themodel.When the detected boxwas closer to the

ground-truth bounding box, the value of mAP was greater,

which meant the model was more accurate.

In order to eliminate redundant scoring boxes after the

initial 2-D detection, all scoring boxes overlapped with higher

scoring boxes by more than 30% were removed. Similarly, all

scoring boxes with very low scores (<0.05) were also removed.

To calculate the mAP of the proposed detection procedure, a

detection was considered to be correct if the intersection over

union (IoU) of the detected target region with the ground truth

box was >0.5. A ratio of the area >0.5 ensured that the forward

estimation was correct. Finally, using the target region de-

tector to predict the test set, the mAP of this detection algo-

rithm for the proposed detection task was 94.70%. Fig. 12

shows some of the test results of the dataset.

In Fig. 12 it can be seen that the detected results of livestock

body parts was more accurate and stable than those for their

heads and hips, making forward direction estimation and

livestock segmentation more effective. This verified that

YOLOv4 is suitable for the proposed problems.

3.2. Livestock pose normalization

In this section, the results of the existing algorithm (SPNA)

from Guo et al. (2019) were compared with the proposed al-

gorithm. The proposed method will be denoted by OSPNA

(optimised SPNA). In Table 1, the results that came from the

SPNA and OSPNA are shown.

This research optimised the forward direction estimation

and livestock segmentation. Therefore, these two parts of the
se normalisation of 3-D livestock from multiple RGB-D cameras,
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Table 1 e Results of different methods for with multi-
view RGB-D data. SPNA is the existingmethod (Guo et al.,
2019). OSPNA is the proposed method. The forward
direction determination (FDD) error represents the results
that the corresponding method cannot determine the
forward direction of livestock. The livestock
segmentation (LS) error represents the results that the
corresponding method cannot determine the cluster of
livestock. The pose normalisation (PN) error represents
the results that the corresponding method cannot
provide the correct result for pose normalisation. The
supported livestock species (SLS) represents which
livestock species can be supported by the corresponding
method.

Method FDD error (%) LS error (%) PN error (%) SLS

OSPNA 2 2.5 4.5 Pig

SPNA 30 5 35

OSPNA 0 2 2 Cattle

SPNA 9 2 11

Table 2 e Results of different methods for modified cattle
data. The data shown in the table shows the number of
result errors in the 10 sets of data in each category.

Deleted part OSPNA error SPNA error

Four limbs 0 2

Half of hip 2 10

Head of cattle 0 1

Hip of cattle 2 3

Half of head 0 0

Hind legs 0 0

Hip and hind legs 0 2
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optimisation were tested with multi-view RGB-D data and

compared to the results produced by of SPNA. The dataset

contains 397 point clouds of live pigs and 103 point clouds of

live cattle. The proposed method was shown to perform better

than the existing SPNA which is the existing pose normal-

isationmethod for different species (Guo et al., 2019). As Table 1

shows quantitatively, the error of SPNA primarily comes from

forward direction estimation and livestock segmentation. An

incorrect forward direction estimation result will lead to the

opposite direction of the pose normalisation result. In the same

way, incorrect livestock segmentation results directly leads to

pose normalisation failure. The proposed OSPNA optimises

forward direction estimation and livestock segmentation,

which substantially improves the success rate of pose
Fig. 13 e (a) show input point clouds; (b) show the results of th

proposed pose normalisation method (OSPNA). In (b), pose norm

vector or incorrect livestock segmentation.
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normalisation. Fig. 13 shows the qualitative comparison of re-

sults produced by the two methods. The forward direction

estimation and livestock segmentation in the SPNA results

were incorrect in some cases. In Fig. 13 the result of the existing

method (SPNA) produced different errors. As shown in

Fig. 13(b), if the front or rear part of the livestock was missing,

the forward directionwill likely be incorrect. If the cluster of the

animal contains other objects or does not describe the livestock

at all, pose normalisation will fail. By introducing 2-D object

detection in the proposed method, the livestock segmentation

and forward direction estimation get a higher success rate, and

the pose normalisation methods become more robust.

Through Table 1, it was found that the results of the two

algorithms (SPNA and OSPNA) were quite different with pig

data, whilst the difference with the cattle data was small. This

was caused by the integrity of the data. From the comparison

of data integrity, the integrity of cattle data was better than

that of pig data. Therefore, to further verify the effectiveness

of our proposed algorithm under more harsh conditions, the

cattle data was manually modified. To more comprehensively

verify the effectiveness of our proposed algorithm (OSPNA),
e existing method (SPNA); and (c) show the results of the

alisation failure is caused by an incorrect forward direction

se normalisation of 3-D livestock from multiple RGB-D cameras,
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key parts of the cattle data, including the head, hind legs,

limbs, hip, etc. were deleted. As shown in Figs. 11 and 7 cat-

egories were devised for the different parts to be deleted. For

each category 10 sets of data were produced. Then, as shown

in Table 2, the results of the two algorithms on this modified

cattle data were presented. In 70 sets of data, OSPNA has 4

errors (5%) and SPNA has 18 errors (26%). Particularly in the

case of half of hip deleted dataset, the results of the SPNA

were almost always wrong. Examples of results are given in

the last two columns of Fig. 13. Thus, after analysing the

various aspects, the robustness of the OSPNA in pose nor-

malisation was significantly improved than that of SPNA.

Through the use of multiple RGB-D cameras, large amounts

of animal point cloud data can be obtained. For each animal,

RGB-D data can be obtained from different angles at the same

time, and the data of the entire animal can be obtained after

point cloud processing. Moreover, the body shape information

of animals can be obtained through pose normalisation, facil-

itating the continuous monitoring of the physical condition of

animals. Data collected by multiple cameras can also be inte-

grated with animal data collected by traditional manual mea-

surements. This integrated data can also be used for research

on body condition score (BCS). In farms, multiple RGB-D cam-

eras will require more than two cameras and a computer used

to synchronise the cameras. As for data storage, local storage or

cloud storage can be selected. Both these storagemethods have

their own advantages and disadvantages and need to be

selected in light of the local situation.

4. Conclusion

A 2-D/3-D fusion-based robust livestock pose normalisation

method for 3-D point clouds captured from multiple RGB-D

cameras, was proposed in this study. This method fused the

information of 2-D images and 3-D data to improve the

robustness of the computational process. Specifically, by

introducing the existing 2-D object detection technology, for-

ward estimation and segmentation for livestock were opti-

mised. Extensive experiments with multi-view RGB-D data

describing livestock showed that the proposed method is

more robust and practical than existing methods. The pro-

posed algorithm can be used in body measurement system

that can be used for healthmonitoring, weighing, and so on. In

addition, ourmethod can deal with different livestock species,

providing satisfactory input data for other algorithms, such as

animal behaviour analysis and skeleton extraction.
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