您的浏览器版本太低,请使用IE9(或以上)、谷歌、火狐等现代浏览器。360、QQ、搜狗等浏览器请使用极速模式。
学院发表文章

The native SOC increase in woodland and lawn soil amended with biochar surpassed greenhouse - A seven-year field trial

发布日期:2024-03-30浏览次数:信息来源:土地科学与技术学院

Fenglei Guo   Chen Wang   Shuang Wang   Xiaorong Zhao   Guitong Li   Zhencai Sun

Abstract

The effects of applying biochar with the same characteristics and at the same dose on the storage, composition, and underlying mechanisms of native organic carbon (n-SOC) dynamics in different ecosystems are still unclear. This study aimed to explore the effects of biochar amendment (7 years) on carbon sequestration and the n-SOC pools of woodland, lawn, and greenhouse soils. The ‘water floating method’ and improved ‘combustion loss method’ were used in this study to quantify residual biochar in soil. The results showed that after 7 years, the amount of biochar left in woodland, lawn, and greenhouse soils was 67.12 %, 87.50 %, and 88.13 % of the initial applied amount, respectively. And the n-SOC content increased approximately 2.07, 3.07, and 0.22 times, respectively, mainly due to increases in the native soil humin (n-HM) content of the soil. Biochar also increased the proportion of large aggregates in woodland and lawn soil and increased the t-SOC content of aggregates in each particle size fraction. Additionally, biochar increased the t-SOC of greenhouse soil aggregates but had no significant effect on the distribution of aggregates. The presence of biochar increased native soil easily oxidizable carbon (n-EOC) and microbial biomass carbon (n-MBC) in all three ecosystems. And increases in n-MBC in woodland and lawn soils occurred, which promoted the depletion of native soil hot water dissolvable organic carbon (n-HWOC) and increased CO2 emissions. Furthermore, the microbial respiration quotient (qCO2) of woodland and greenhouse soils was reduced by biochar, and that of lawn soil was unchanged. The carbon use efficiency (CUE) of lawn soils were reduced, possibly because biochar reduced the abundance of soil fungi/bacteria (F/B). In summary, the 7-year application of biochar significantly enhanced the n-SOC content in woodland and lawn soils, mainly due to an increase in humin, while a weaker enhancement was observed in greenhouse soil.

Keywords

Biochar; Native SOC; Labile organic carbon; Recalcitrant organic carbon; CO2 emission


The native SOC increase in woodland and lawn soil amended with biochar surpassed greenhouse - A seven-year field trial.pdf