您的浏览器版本太低,请使用IE9(或以上)、谷歌、火狐等现代浏览器。360、QQ、搜狗等浏览器请使用极速模式。
学院发表文章

A Remotely Sensed Framework for Spatially-Detailed Dryland Soil Organic Matter Mapping: Coupled Cross-Wavelet Transform with Fractional Vegetation and Soil-Related Endmember Time Series

发布日期:2022-09-19浏览次数:信息来源:土地科学与技术学院

Qiangqiang Sun   Ping Zhang   Xin Jiao   Fei Lun   Shiwei Dong   Xin Lin   Xiangyu Li   Danfeng Sun

Abstract

Soil organic matter (SOM) plays pivotal roles in characterizing dryland structure and function; however, remotely sensed spatially-detailed SOM mapping in these regions remains a challenge. Various digital soil mapping approaches based on either single-period remote sensing or spectral indices in other ecosystems usually produce inaccurate, poorly constrained estimates of dryland SOM. Here, a framework for spatially-detailed SOM mapping was proposed based on cross-wavelet transform (XWT) that exploits ecologically meaningful features from intra-annual fractional vegetation and soil-related endmember records. In this framework, paired green vegetation (GV) and soil-related endmembers (i.e., dark surface (DA), saline land (SA), sand land (SL)) sequences were adopted to extract 30 XWT features in temporally and spatially continuous domains of cross-wavelet spectrum. We then selected representative features as exploratory covariates for SOM mapping, integrated with four state-of-the-art machine learning approaches, i.e., ridge regression (RR), least squares-support vector machines (LS-SVM), random forests (RF), and gradient boosted regression trees (GBRT). The results reported that SOM maps from 13 coupled filtered XWT features and four machine learning approaches were consistent with soil-landscape knowledge, as evidenced by a spatially-detailed gradient from oasis to barren. This framework also presented more accurate and reliable results than arithmetically averaged features of intra-annual endmembers and existing datasets. Among the four approaches, both RF and GBRT were more appropriate in the XWT-based framework, showing superior accuracy, robustness, and lower uncertainty. The XWT synthetically characterized soil fertility from the consecutive structure of intra-annual vegetation and soil-related endmember sequences. Therefore, the proposed framework improved the understanding of SOM and land degradation neutrality, potentially leading to more sustainable management of dryland systems.

Keywords: soil organic matter; dryland systems; cross-wavelet transform; endmember fraction; time series


A Remotely Sensed Framework for Spatially-Detailed Dryland Soil Organic Matter Mapping_ Coupled Cross-Wavelet Transform with Fractional Vegetation and Soil-Related Endmember Time Series.pdf