您的浏览器版本太低,请使用IE9(或以上)、谷歌、火狐等现代浏览器。360、QQ、搜狗等浏览器请使用极速模式。
学院发表文章

Effect of phytic acid and morphology on Fe (oxyhydr)oxide transport under saturated flow condition

发布日期:2021-12-31浏览次数:信息来源:土地科学与技术学院

Kang Zhao   Shah Tufail   Yuji Arai   Prabhakar Sharma   Qianru Zhang   Yanhua Chen   Xiang Wang   Jianying Shang

Abstract

Phytic acid (myo-inositol hexaphosphate, IHP) is a dominant form of organic phosphate (OP) in organic carbon-rich surface soil. The IHP impact on Fe (oxyhydr)oxide transport is critical for iron and phosphorus (bio)geochemical processes in iron and phosphorus rich soil and subsurface systems. Three typical Fe (oxyhydr)oxides (ferrihydrite, hematite, and goethite) were studied in this research. The effects of IHP and morphology on Fe (oxyhydr)oxide transport and IHP cotransport had been investigated using saturated sand columns. The results showed that IHP significantly enhanced the mobility of Fe (oxyhydr)oxide by 30–90% due to the stronger electrostatic repulsion. At low IHP concentration (< 50 µM IHP), the rod-like goethite and goethite-facilitated IHP showed high mobility due to their orientation and motion along the water flow, which is 70% faster than ferrihydrite and hematite at pH 5 and 90% faster at pH 10. The mobility of amorphous ferrihydrite was slowest among three selected iron oxides (< 37% at pH 5 and < 72% at pH 10). At high IHP concentration (> 50 μM IHP), the surface precipitation might have occurred on ferrihydrite because of its poorly ordered crystallinity, contributing to its less negatively charged surface and weak transport. The new insight provided in this study is essential for evaluating the fate and transport behavior of iron and iron-facilitate OP in soil rich in iron and OP.

Keywords

Phytic acid; Fe (oxyhydr)oxide; Cotransport; Morphology


Effect of phytic acid and morphology on Fe (oxyhydr)oxide transport under saturated flow condition.pdf